Bifunctional Inhibitors from Capsicum chinense Seeds with Antimicrobial Activity and Specific Mechanism of Action Against Phytopathogenic Fungi.

Protein Pept Lett

Laboratorio de Quimica e Funcao de Proteinas e Peptideos, Centro de Biociencias e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.

Published: April 2021

Background: Antimicrobial peptides (AMPs) are found in the defense system in virtually all life forms, being present in many, if not all, plant species.

Objective: The present work evaluated the antimicrobial, enzymatic activity and mechanism of action of the PEF2 fraction from Capsicum chinense Jack. seeds against phytopathogenic fungi.

Methods: Peptides were extracted from C. chinense seeds and subjected to reverse-phase chromatography on an HPLC system using a C18 column coupled to a C8 guard column, then the obtained PEF2 fraction was rechromatographed using a C2/C18 column. Two fractions, named PEF2A and PEF2B, were obtained. The fractions were tested for antimicrobial activity on Colletotrichum gloeosporioides, Colletotrichum lindemuthianum, Fusarium oxysporum and Fusarium solani. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and α-amylase activity assays were also performed. The mechanism of action by which PEF2 acts on filamentous fungi was studied through analysis of membrane permeability and production of reactive oxygen species (ROS). Additionally, we investigated mitochondrial functionality and caspase activation in fungal cells.

Results: It is possible to observe that PEF2 significantly inhibited trypsin activity and T. molitor larval α-amylase activity. The PEF2 fraction was able to inhibit the growth of C. gloeosporioides, C. lindemuthianum and F. oxysporum. PEF2A inhibited the growth of C. lindemuthianum (75%) and F. solani (43%). PEF2B inhibited C. lindemuthianum growth (66%) and F. solani (94%). PEF2 permeabilized F. solani cell membranes and induced ROS in F. oxysporum and F. solani. PEF2 could dissipate mitochondrial membrane potential but did not cause the activation of caspases in all studied fungi.

Conclusion: The results may contribute to the biotechnological application of these AMPs in the control of pathogenic microorganisms in plants of agronomic importance.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929866527666200617124221DOI Listing

Publication Analysis

Top Keywords

mechanism action
12
pef2 fraction
12
capsicum chinense
8
chinense seeds
8
antimicrobial activity
8
action pef2
8
α-amylase activity
8
pef2
7
activity
6
solani
5

Similar Publications

Previous research has demonstrated ɑ7nAch receptor (ɑ7nAchR) agonists to provide benefit for rheumatoid arthritis (RA) patients. However, the immunological mechanism of action for these ɑ7nAchR agonists has not been elucidated. Herein, the effect of GTS-21, a selective ɑ7nAchR agonist, on the differentiation of Th17 and Th2 cells was assessed.

View Article and Find Full Text PDF

Cancer is a leading cause of death worldwide and its treatment is hampered by the lack of specificity and side effects of current drugs. Cardiotonic steroids (CTS) interact with Na/K-ATPase (NKA) and induce antineoplastic effects, but their narrow therapeutic window is key limiting factor. The synthesis of digitoxigenin derivatives with glycosidic unit modifications is a promising approach to develop more selective and effective antitumor agents.

View Article and Find Full Text PDF

Seaweed, a promising source of nutritional proteins, including protein hydrolysates, bioactive peptides, phycobiliproteins, and lectins with multi-biological activities. Seaweeds-derived proteins and peptides have attracted increasing interest for their potential applications in dietary supplements, functional foods, and pharmaceuticals industries. This work aims to comprehensively review the preparation methods and virtual screening strategies for seaweed-derived functional peptides.

View Article and Find Full Text PDF

Self-corrosion and low practical voltage of anodes severely limit the usage of Mg-air batteries. Although many elements, including indium (In), have been used to enhance the discharge characteristics of Mg anodes, unclear mechanism of the action of a single element and lack of research on binary alloys as anodes have restricted the development of Mg-air batteries. Herein, Mg-In ( = 0.

View Article and Find Full Text PDF

Genomic and cellular responses to aspirin in colonic organoids from African- and European-Americans.

Physiol Genomics

January 2025

Section of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Chicago, Chicago, Illinois.

Aspirin (ASA) is a proven chemoprotective agent for colorectal cancer (CRC), though inter-individual responses and cellular mechanisms are not well characterized. Human organoids are ideal to study treatment responses across individuals. Here, colonic organoids from African-Americans (AA) and European-Americans (EA)were used to profile genomic and cellular ASA responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!