Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite marked advances in the field of cartilage tissue engineering, it remains a challenge to engineer cartilage constructs with homogeneous properties. Moreover, for engineered cartilage to make it to the clinic, this homogeneous growth must occur in a time-efficient manner. In this study we investigated the potential of increased media volume to expedite the homogeneous maturation of mesenchymal stem cell (MSC) laden engineered constructs over time . We assessed the MSC-laden constructs after 4 and 8 weeks of chondrogenic culture using bulk mechanical, histological, and biochemical measures. These assays were performed on both the intact total constructs and the construct cores to elucidate region-dependent differences. In addition, local strain transfer was assessed to quantify depth-dependent mechanical properties throughout the constructs. Our findings suggest that increased media volume enhances matrix deposition early in culture and ameliorates unwanted regional heterogeneities at later time points. Taken together, these data support the use of higher media volumes during culture to hasten tissue maturation and increase the core strength of tissue constructs. These findings will forward the field of cartilage tissue engineering and the translation of tissue engineered constructs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7891201 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2020.0123 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!