Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introducing functional synthetic biomaterials to the literature became quite essential in biomedical technologies. For the growth of novel biomedical engineering approaches, progressive functional properties as well as the robustness of the manufacturing processes are essential. By using acid-induced epoxide ring-opening polymerizations through catalysts, a wide variety of biodegradable and functionalized biomaterials can be synthesized. Sebacic acid (SA) and poly(ethylene glycol) diglycidyl ether (PEGDGE) are amongst the FDA-approved biocompatible materials. In this study, we focused on the rapid synthesis of caffeine-catalyzed self-healable elastomer via a facile microwave-assisted synthesis route. The elastomer prepared can be used in various applications, including tactile sensors, wearable electronics, and soft robotics. SA and PEGDGE were catalyzed in the presence of caffeine under microwave irradiation followed by crosslinking , yielding an elastomeric material. The chemical characterizations of the obtained elastomer were carried out. The resulting material is transparent, highly stretchable, and has capacitive and self-healing properties even at room temperature. The material developed can be easily applied for the aforementioned applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8236389 | PMC |
http://dx.doi.org/10.1089/soro.2019.0148 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!