In medical diagnostic studies, a diagnostic test can be evaluated based on its sensitivity under a desired specificity. Existing methods for inference on sensitivity include normal approximation-based approaches and empirical likelihood (EL)-based approaches. These methods generally have poor performance when the specificity is high, and some require choosing smoothing parameters. We propose a new influence function-based empirical likelihood method and Bayesian empirical likelihood methods to overcome such problems. Numerical studies are performed to compare the finite sample performance of the proposed approaches with existing methods. The proposed methods are shown to perform better in terms of both coverage probability and interval length. A real data set from Alzheimer's Disease Neuroimaging Initiative (ANDI) is analyzed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0962280220929042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!