Neutrophil Extracellular Trapping Network Promotes the Pathogenesis of Neutrophil-associated Asthma through Macrophages.

Immunol Invest

Department of Pulmonary and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, China.

Published: July 2021

Asthma is a complex airway inflammatory disease that can be roughly classified into eosinophilic phenotype and non-eosinophilic phenotype. Most of the latter manifested as airway inflammation dominated by neutrophil infiltration, namely neutrophil-dominated asthma (NA). Neutrophil extracellular trapping (NETs) is a newly discovered antimicrobial mechanism of neutrophils; however, NETs can not only resist killing pathogenic microorganisms, but also promote tissue damage and autoimmune response. In the present study, we successfully established NA model in C57BL/6 mice and observed the increased formation of NETs. In NA mice, the free DNA abundance, the airway resistance, the cell numbers (total cell number, macrophage number, and neutrophil number), and inflammatory cytokine levels were significantly increased while the lung dynamic compliance was significantly reduced. After DNase I treatment, the above indexes in NA mice were all improved. In NA mice, either treatment with macrophage scavenger or IL-1β neutralizing antibody also improved the above-described indexes. , in human peripheral blood-derived neutrophils, PMA treatment significantly increased the formation of NETs. Furthermore, in macrophages differentiated from THP-1 monocytes, LPS or isolated NETs both significantly increased the levels of cytokines. In conclusion, NETs can stimulate macrophages to secrete IL-1β, which promotes neutrophils infiltration in the airway; infiltrated neutrophils, in turn, generates NETs, which can amplify the tissue damage caused by NETs and macrophages, inducing and aggravating NA.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08820139.2020.1778720DOI Listing

Publication Analysis

Top Keywords

neutrophil extracellular
8
extracellular trapping
8
nets
8
tissue damage
8
increased formation
8
formation nets
8
nets macrophages
8
neutrophil
4
trapping network
4
network promotes
4

Similar Publications

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Platelets and neutrophils are among the most abundant cell types in peripheral blood. Beyond their traditional roles in thrombosis and haemostasis, they also play an active role in modulating immune responses. Current knowledge on the role of platelet-neutrophil interactions in the immune system has been rapidly expanding.

View Article and Find Full Text PDF

Bioactive materials from berberine-treated human bone marrow mesenchymal stem cells accelerate tooth extraction socket healing through the jaw vascular unit.

Sci China Life Sci

January 2025

Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital of Nanjing Medical University; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases; Jiangsu Province Engineering Research Centre of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, China.

Delayed tooth extraction socket (TES) healing can cause failure of subsequent oral implantation and increase socioeconomic burden on patients. Excessive amounts of M1 macrophages, apoptotic neutrophils (ANs), and neutrophil extracellular traps (NETs) impair alveolar bone regeneration during TES healing. In the present study, we first discovered that conditioned medium (CM) collected from berberine-treated human bone marrow mesenchymal stem cells (BBR-HB-CM) accelerated TES healing.

View Article and Find Full Text PDF

Pediatric intensive care patients are particularly susceptible to severe bacterial infections because of ineffective neutrophil responses. The reasons why neutrophils of newborns are less responsive than those of adults are not clear. Because adenosine triphosphate (ATP) and adenosine (ADO) tightly regulate neutrophils, we studied whether the ATP and ADO levels in the blood of newborn mice could impair the function of their neutrophils.

View Article and Find Full Text PDF

Neutrophils play key protective roles in influenza infections, yet excessive neutrophilic inflammation is a hallmark of acute lung injury during severe infections. Phenotypic heterogeneity is increasingly recognized in neutrophil populations; however, how functional variation in neutrophils between individuals determine the diverse outcomes of influenza remains unclear. To examine immunologic responses that may drive varying outcomes in influenza, we infected C57BL/6 (B6) and A/J mice with mouse-adapted influenza A virus A/PR/8/34 H1N1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!