Experiments in research on memory, language, and in other areas of cognitive science are increasingly being analyzed using Bayesian methods. This has been facilitated by the development of probabilistic programming languages such as Stan, and easily accessible front-end packages such as brms. The utility of Bayesian methods, however, ultimately depends on the relevance of the Bayesian model, in particular whether or not it accurately captures the structure of the data and the data analyst's domain expertise. Even with powerful software, the analyst is responsible for verifying the utility of their model. To demonstrate this point, we introduce a principled Bayesian workflow (Betancourt, 2018) to cognitive science. Using a concrete working example, we describe basic questions one should ask about the model: prior predictive checks, computational faithfulness, model sensitivity, and posterior predictive checks. The running example for demonstrating the workflow is data on reading times with a linguistic manipulation of object versus subject relative clause sentences. This principled Bayesian workflow also demonstrates how to use domain knowledge to inform prior distributions. It provides guidelines and checks for valid data analysis, avoiding overfitting complex models to noise, and capturing relevant data structure in a probabilistic model. Given the increasing use of Bayesian methods, we aim to discuss how these methods can be properly employed to obtain robust answers to scientific questions. All data and code accompanying this article are available from https://osf.io/b2vx9/. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

Download full-text PDF

Source
http://dx.doi.org/10.1037/met0000275DOI Listing

Publication Analysis

Top Keywords

principled bayesian
12
bayesian workflow
12
cognitive science
12
bayesian methods
12
predictive checks
8
bayesian
6
data
6
model
5
workflow
4
workflow cognitive
4

Similar Publications

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

First-Principles Assessment of ZnTe and CdSe as Prospective Tunnel Barriers at the InAs/Al Interface.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States.

Majorana zero modes are predicted to emerge in semiconductor/superconductor interfaces, such as InAs/Al. Majorana modes could be utilized for fault tolerant topological qubits. However, their realization is hindered by materials challenges.

View Article and Find Full Text PDF

Understanding the relation between cortical neuronal network structure and neuronal activity is a fundamental unresolved question in neuroscience, with implications to our understanding of the mechanism by which neuronal networks evolve over time, spontaneously or under stimulation. It requires a method for inferring the structure and composition of a network from neuronal activities. Tracking the evolution of networks and their changing functionality will provide invaluable insight into the occurrence of plasticity and the underlying learning process.

View Article and Find Full Text PDF

AI techniques are increasingly being used to identify individuals both offline and online. However, quantifying their effectiveness at scale and, by extension, the risks they pose remains a significant challenge. Here, we propose a two-parameter Bayesian model for exact matching techniques and derive an analytical expression for correctness (κ), the fraction of people accurately identified in a population.

View Article and Find Full Text PDF

Bayesian Gene Set Benchmark Dose Estimation for "omic" responses.

Bioinformatics

January 2025

Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, North Carolina 27709, United States.

Motivation: Estimating a toxic reference point using tools like the benchmark dose (BMD) is a critical step in setting policy to regulate pollution and ensure safe environments. Toxicity can be measured for different endpoints, including changes in gene expression and histopathology for various tissues, and is typically explored one gene or tissue at a time in a univariate setting that ignores correlation. In this work, we develop a multivariate estimation procedure to estimate the BMD for specified gene sets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!