Maximizing the efficiency of solar energy conversion using dye assemblies rests on understanding where the energy goes following absorption. Transient spectroscopies in solution are useful for this purpose, and the time-resolved data are usually analyzed with a sum of exponentials. This treatment assumes that dynamic events are well separated in time, and that the resulting exponential prefactors and phenomenological lifetimes are related directly to primary physical values. Such assumptions break down for coincident absorption, emission, and excited state relaxation that occur in transient absorption and photoluminescence of tris(2,2'-bipyridine)ruthenium(2+) derivatives, confounding the physical meaning of the reported lifetimes. In this work, we use inductive modeling and stochastic chemical kinetics to develop a detailed description of the primary ultrafast photophysics in transient spectroscopies of a series of Ru dyes, as an alternative to sums of exponential analysis. Commonly invoked three-level schemes involving absorption, intersystem crossing (ISC), and slow nonradiative relaxation and incoherent emission to the ground state cannot reproduce the experimentally measured spectra. The kinetics simulations reveal that ultrafast decay from the singlet excited state manifold to the ground state competes with ISC to the triplet excited state, whose efficiency was determined to be less than unity. The populations predicted by the simulations are used to estimate the magnitudes of transition dipoles for excited state excitations and evaluate the influence of specific ligands. The mechanistic framework and methodology presented here are entirely general, applicable to other dye classes, and can be extended to include charge injection by molecules bound to semiconductor surfaces.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.0c03110 | DOI Listing |
J Phys Chem A
January 2025
Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States.
The energy gaps, spin-orbit coupling (SOC), and admixture coefficients over a series of the configurations are evaluated by the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, SA-CASSCF/ANO-RCC-VDZP, and MS-CASPT2/ANO-RCC-VDZP to reveal the extent of the inaccuracy of the SA-CASSCF. By comparing the mean absolute errors for the energy gaps and the admixture coefficient magnitudes (ACMs) measured between the SA-CASSCF/6-31G, SA-CASSCF/6-31G*, or SA-CASSCF/ANO-RCC-VDZP and the MS-CASPT2/ANO-RCC-VDZP, the SA-CASSCF/6-31G is selected as the electronic structure method in the nonadiabatic molecular dynamics simulation. The major components of the ACMs of the SA-CASSCF/6-31G and MS-CASPT2/ANO-RCC-VDZP are identified and compared; we find that the ACMs are underestimated by the SA-CASSCF/6-31G, which is verified by the reasonable triplet quantum yield simulated by the trajectory surface hopping and the calibrated SA-CASSCF/6-31G.
View Article and Find Full Text PDFUltrasonics
January 2025
Federal State Budgetary Institution , Technological Institute for Superhard and Novel Carbon Materials of National Research Centre, Kurchatov Institute, 108840 Moscow, Troitsk, Russian Federation.
Microwave surface and Lamb waves in a multilayered piezoelectric "Al-IDT/(AlSc)N/(001)[110] diamond" structure designed as a SAW resonator were studied using both the experimental and modeling methods. In this structure, it is possible to generate Rayleigh, surface horizontal (SH) and Lamb waves simultaneously. The successful excitation of Lamb waves at operating frequencies up to 20 GHz has been obtained.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Rheology Department, Polymat Institute, University of the Basque Country, 20018 Donostia-San Sebastian, Euskadi, Spain.
This paper addresses the author's current understanding of the physics of interactions in polymers under a voltage field excitation. The effect of a voltage field coupled with temperature to induce space charges and dipolar activity in dielectric materials can be measured by very sensitive electrometers. The resulting characterization methods, thermally stimulated depolarization (TSD) and thermal-windowing deconvolution (TWD), provide a powerful way to study local and cooperative relaxations in the amorphous state of matter that are, arguably, essential to understanding the glass transition, molecular motions in the rubbery and molten states and even the processes leading to crystallization.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Computer Science and Technology, Beihua University, No. 3999 East Binjiang Road, Jilin 132013, China.
With the wide application of Residence Time Difference (RTD) fluxgate sensors in Unmanned Aerial Vehicle (UAV) aeromagnetic measurements, the requirements for their measurement accuracy are increasing. The core characteristics of the RTD fluxgate sensor limit its sensitivity; the high-permeability soft magnetic core is especially easily interfered with by the input noise. In this paper, based on the study of the excitation signal and input noise characteristics, the stochastic resonance is proposed to be realized by adding feedback by taking advantage of the high hysteresis loop rectangular ratio, low coercivity and bistability characteristics of the soft magnetic material core.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Automation, Beijing Institute of Technology, Beijing 100081, China.
Existing autonomous driving systems face challenges in accurately capturing drivers' cognitive states, often resulting in decisions misaligned with drivers' intentions. To address this limitation, this study introduces a pioneering human-centric spatial cognition detecting system based on drivers' electroencephalogram (EEG) signals. Unlike conventional EEG-based systems that focus on intention recognition or hazard perception, the proposed system can further extract drivers' spatial cognition across two dimensions: relative distance and relative orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!