Impact of Boundary Heat Losses on Frontal Polymerization.

J Phys Chem B

Department of Aerospace Engineering, University of Illinois, Urbana, Illinois 61801, United States.

Published: July 2020

Considered as a faster and energy-efficient alternative to conventional manufacturing techniques for thermosetting polymers and composites, frontal polymerization (FP) is built on a thermal equilibrium between the heat generated by the exothermic reaction of the resin system and the heat consumed by the advancing front. However, a heat loss to the surrounding may disrupt this thermal equilibrium and slow down and possibly quench the front. This paper investigates the impact of two types of heat loss to the surrounding on the key characteristics (propagation speed and maximum temperature) of the polymerization front: convective heat loss along the boundary of the reaction channel and contact heat loss at channel-tool plate interfaces. The analysis is performed numerically using a nonlinear, adaptive fully coupled finite element solver.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.0c03107DOI Listing

Publication Analysis

Top Keywords

heat loss
16
frontal polymerization
8
thermal equilibrium
8
loss surrounding
8
heat
7
impact boundary
4
boundary heat
4
heat losses
4
losses frontal
4
polymerization considered
4

Similar Publications

Crohn's disease, irritable bowel syndrome, and chronic fatigue: the importance of communication and symptom management-a case report.

J Med Case Rep

January 2025

Center for Complementary Medicine, Department of Internal Medicine II, Faculty of Medicine, Medical Center - University of Freiburg, University of Freiburg, 79106, Freiburg, Germany.

Background: Crohn's disease and irritable bowel syndrome may both cause abdominal pain and diarrhea. Irritable bowel syndrome not only is an important differential diagnosis for Crohn's disease but also occurs in one out of three patients with Crohn's disease in remission in parallel. If not adequately diagnosed and treated, additional functional symptoms such as fatigue and/or muscle pain may develop, indicating a more severe course.

View Article and Find Full Text PDF

Postoperative fever following neuroendoscopic procedures has been well-documented, yet specific differentiation based on the nature and site of the procedure remains lacking. Given the anatomical involvement of the hypothalamus in temperature regulation, we propose that endoscopic third ventriculostomy (ETV) may have a distinct impact on postoperative fever. This study aims to investigate this phenomenon.

View Article and Find Full Text PDF

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

Pugionium cornutum (L.) Gaertn (P. cornutum) has strong tolerance to drought, salt and disease, but the tolerance mechanisms for such stresses in P.

View Article and Find Full Text PDF

The mechanism of alkali to inhibit the organics polymerization in improving the biodegradability of wastewater treated by heat/peroxydisulfate.

Water Res

January 2025

Yellow River Laboratory of Shanxi Province, Shanxi University, Taiyuan, 030006, PR China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China. Electronic address:

High-temperature wastewaters can themselves activate peroxydisulfate (PDS) to remove aromatic contaminants via polymerization. This, however, may result in an insufficient carbon source for denitrification during biochemical treatment, and the formed polymers, without a proper reuse method, will be costly to handle as hazardous waste. This study demonstrates that the addition of NaOH can suppress the polymerization of aromatic contaminants, which is observed not only in simulated wastewater but also in actual coking wastewater (ACW).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!