Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The density within the interface between two fluid phases at equilibrium gradually changes from that of one phase to that of the other. The main change in density, according to experimental measurements, practically occurs over a finite distance of O [1 nm]. If we assume that the average stress difference within the interface is on the order of magnitude of ambient pressure, then the Bakker equation implies that for a liquid with surface tensions, say ∼50 mN/m, we get an interface thickness of ∼500 nm. This is certainly too big because it contradicts experimental findings. Alternatively, if the thickness is assumed to be O [10 nm] or less, as is usually believed, the average stress difference must be ∼5 × 10 N/m or bigger, which is surprisingly high. This paper shows using a few approaches that such a high average stress difference is due to negative stresses in the interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c01193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!