Utrophin modulation is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), which should be applicable to all patient populations. Following on from ezutromid, the first-generation utrophin modulator, we describe the development of a second generation of utrophin modulators, based on the bioisosteric replacement of the sulfone group with a phosphinate ester and substitution of the metabolically labile naphthalene with a haloaryl substituent. The improved physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties, further reflected in the enhanced pharmacokinetic profile of the most advanced compounds, and , led to significantly better exposure compared to ezutromid and alleviation of the dystrophic phenotype in mice. While was found to have dose-limiting hepatotoxicity, and its enantiomers exhibited limited off-target effects, resulting in a safe profile and highlighting their potential utility as next-generation utrophin modulators suitable for progression toward a future DMD therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.0c00807DOI Listing

Publication Analysis

Top Keywords

duchenne muscular
8
muscular dystrophy
8
utrophin modulators
8
utrophin
5
2-arylbenzo[]oxazole phosphinate
4
phosphinate esters
4
esters second-generation
4
second-generation modulators
4
modulators utrophin
4
utrophin treatment
4

Similar Publications

Skeletal muscle regeneration in adults is predominantly driven by satellite cells. Loss of satellite cell pool and function leads to skeletal muscle wasting in many conditions and disease states. Here, we demonstrate that the levels of fibroblast growth factor-inducible 14 (Fn14) are increased in satellite cells after muscle injury.

View Article and Find Full Text PDF

The Unexplored Role of Connexin Hemichannels in Promoting Facioscapulohumeral Muscular Dystrophy Progression.

Int J Mol Sci

January 2025

Programa de Comunicación Celular en Cáncer, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7550000, Chile.

DUX4 is typically a repressed transcription factor, but its aberrant activation in Facioscapulohumeral Muscular Dystrophy (FSHD) leads to cell death by disrupting muscle homeostasis. This disruption affects crucial processes such as myogenesis, sarcolemma integrity, gene regulation, oxidative stress, immune response, and many other biological pathways. Notably, these disrupted processes have been associated, in other pathological contexts, with the presence of connexin (Cx) hemichannels-transmembrane structures that mediate communication between the intracellular and extracellular environments.

View Article and Find Full Text PDF

Two Novel Mouse Models of Duchenne Muscular Dystrophy with Similar Dmd Exon 51 Frameshift Mutations and Varied Phenotype Severity.

Int J Mol Sci

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia.

Duchenne muscular dystrophy (DMD) is a severe X-linked genetic disorder caused by an array of mutations in the dystrophin gene, with the most commonly mutated regions being exons 48-55. One of the several existing approaches to treat DMD is gene therapy, based on alternative splicing and mutant exon skipping. Testing of such therapy requires animal models that carry mutations homologous to those found in human patients.

View Article and Find Full Text PDF

Inefficient targeting of muscle stem cells (MuSCs), also called satellite cells, represents a major bottleneck of current therapeutic strategies for muscular dystrophies, as it precludes the possibility of promoting compensatory regeneration. Here we describe a muscle-targeting delivery platform, based on gold nanoparticles, that enables the release of therapeutic oligonucleotides into MuSCs. We demonstrate that AuNPs conjugation to an aptamer against α7/β1 integrin dimers directs either local or systemic delivery of microRNA-206 to MuSCs, thereby promoting muscle regeneration and improving muscle functionality, in a mouse model of Duchenne Muscular Dystrophy.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is a severe muscle disorder caused by mutations in the DMD gene, leading to dystrophin deficiency. Antisense oligonucleotide (ASO)-mediated exon skipping offers potential by partially restoring dystrophin, though current therapies remain mutation specific with limited efficacy. To overcome those limitations, we developed brogidirsen, a dual-targeting ASO composed of two directly connected 12-mer sequences targeting exon 44 using phosphorodiamidate morpholino oligomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!