A microporous three-dimensional (3D) hydrogen-bonded organic framework (HOF-20) has been constructed from an aromatic-rich tetratopic carboxylic acid, 5-(2,6-bis(4-carboxyphenyl)pyridin-4-yl)isophthalic acid (HBCPIA). The activated HOF-20a has a moderately high Brunauer-Emmett-Teller (BET) surface area of 1323 m g and excellent stability in water and HCl aqueous solution. HOF-20 exhibits highly efficient turn-up fluorescent sensing of aniline in water with a detection limit of 2.24 μM and is selective toward aniline in the presence of aromatic interferents, owing to the hydrogen bonding and edge-to-face π-π stacking interactions between the HOF-20 host and the guest aniline molecules, as demonstrated in the single-crystal X-ray structure of HOF-20⊃aniline. Density functional theory (DFT) calculations further demonstrate that the recognition of aniline molecules by HOF-20 could restrict the rotation of the aromatic rings in HBCPIA linkers, reducing the nonradiative decay pathways upon photoexcitation and subsequently enhancing the fluorescence intensity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.0c05277DOI Listing

Publication Analysis

Top Keywords

hydrogen-bonded organic
8
organic framework
8
highly efficient
8
efficient turn-up
8
turn-up fluorescent
8
fluorescent sensing
8
sensing aniline
8
aniline molecules
8
aniline
5
microporous hydrogen-bonded
4

Similar Publications

Developing hybrid fluorescence (FL)/room-temperature phosphorescent (RTP) materials in dry-state, aqueous, and organic solvents holds paramount importance in broadening their applications. However, it is extremely challenging due to dissolved oxygen and solvent-assisted relaxation causing RTP quenching in an aqueous environment and great dependence on SiO-based materials. Herein, an efficient endogenetic carbon dot (CD) strategy within melamine-formaldehyde (MF) microspheres to activate RTP of CDs has been proposed through the pyrolysis of isophthalic acid (IPA) molecules and branched-chain intra-microspheres.

View Article and Find Full Text PDF

Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures.

View Article and Find Full Text PDF

Using temperature modulation, two distinct hydrogen bond organic frameworks HOF-C and HOF-K with different pore sizes were synthesized from the same ligands, tris(4-(4-1,2,4-triazole-4-yl)phenyl)amine. The pore size difference prevents TRZ from entering HOF-K, while allowing TRZ to selectively insert into the larger-pored HOF-C to form HOF-C-TRZ. The donor-acceptor (D-A) structure formed in HOF-C-TRZ enhances its photoelectric response and exhibits exceptional uranium reduction under visible light irradiation.

View Article and Find Full Text PDF

The binding free energy of hydrogen-bonded complexes is generally inversely proportional to the solvent dielectric constant. This occurs because the solvent-accessible surface area of the complex is always smaller than that of the individual subsystems, leading to a reduction in solvation energy. The present study explores the potential for stabilizing hydrogen-bonded complexes in a solvent with higher polarity.

View Article and Find Full Text PDF

A luminescent lanthanide functionalized hydrogen-bonded organic framework hydrogel: Fluorescence sensing platform for copper and iron ions detection.

Talanta

December 2024

State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science & Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China. Electronic address:

The excessive presence of the metal ions Cu and Fe in the environment poses a serious threat to ecosystems and human health, so timely and accurate detection of them has become essential and urgent. In this paper, a novel hydrogel-based fluorescent sensor, named ME-IPA@SA-TbZn, was fabricated facilely through an in-situ cross-linking modification method and was used for the detection of Cu and Fe in water bodies. The ME-IPA@SA-TbZn is essentially a hybrid hydrogel bead that exhibits vibrant fluorescence, employing Tb and Zn functionalized hydrogen-bonded organic frameworks (HOFs) as the fluorescence functional core and sodium alginate (SA) as the hydrogel matrix.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!