Base editing technology based on clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) is a recent addition to the family of CRISPR technologies. Compared with the traditional CRISPR/Cas9 technology, it does not rely on DNA double strand break and homologous recombination, and can realize gene inactivation and point mutation more quickly and simply. Herein, we first developed a base editing method for genome editing in utilizing CRISPR/dCas9 (a fully nuclease-deficient mutant of Cas9 from ) and activation-induced cytidine deaminase (AID). This method achieved three and four loci simultaneous editing with editing efficiency up to 100% and 50%, respectively. Our base editing system in has a 5 nt editing window, which is similar to previously reported base editing in other microorganisms. We demonstrated that the plasmid curing rate is almost 100%, which is advantageous for multiple rounds of genome engineering in . Finally, we applied multiplex genome editing to generate a 168 mutant strain with eight inactive extracellular protease genes in just two rounds of base editing and plasmid curing, suggesting that it is a powerful tool for gene manipulation in and industrial applications in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.0c00151DOI Listing

Publication Analysis

Top Keywords

base editing
24
editing
11
genome editing
8
plasmid curing
8
base
6
crispr-dcas9 mediated
4
mediated cytosine
4
cytosine deaminase
4
deaminase base
4
editing base
4

Similar Publications

Adenosine-to-inosine (A-to-I) editing, catalyzed by adenosine deaminases acting on RNA (ADARs), is a prevalent post-transcriptional modification that is vital for numerous biological functions. Given that this modification impacts global gene expression, RNA localization, and innate cellular immunity, dysregulation of A-to-I editing has unsurprisingly been linked to a variety of cancers and other diseases. However, our current understanding of the underpinning mechanisms that connect dysregulated A-to-I editing and disease processes remains limited.

View Article and Find Full Text PDF

Obstacles in quantifying A-to-I RNA editing by Sanger sequencing.

Methods Enzymol

January 2025

Faculty of Biology, Technion - Israel Institute of Technology, Technion City, Haifa, Israel. Electronic address:

Adenosine-to-Inosine (A-to-I) RNA editing is the most prevalent type of RNA editing, in which adenosine within a completely or largely double-stranded RNA (dsRNA) is converted to inosine by deamination. RNA editing was shown to be involved in many neurological diseases and cancer; therefore, detection of A-to-I RNA editing and quantitation of editing levels are necessary for both basic and clinical biomedical research. While high-throughput sequencing (HTS) is widely used for global detection of editing events, Sanger sequencing is the method of choice for precise characterization of editing site clusters (hyper-editing) and for comparing levels of editing at a particular site under different environmental conditions, developmental stages, genetic backgrounds, or disease states.

View Article and Find Full Text PDF

Aptazyme-directed A-to-I RNA editing.

Methods Enzymol

January 2025

Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu, P.R. China. Electronic address:

As a promising therapeutic approach, the RNA editing process can correct pathogenic mutations and is reversible and tunable, without permanently altering the genome. RNA editing mediated by human ADAR proteins offers unique advantages, including high specificity and low immunogenicity. Compared to CRISPR-based gene editing techniques, RNA editing events are temporary, which can reduce the risk of long-term unintended side effects, making off-target edits less concerning than DNA-targeting methods.

View Article and Find Full Text PDF

Restoration of G to A mutated transcripts using the MS2-ADAR1 system.

Methods Enzymol

January 2025

Area of Bioscience and Biotechnology, School of Materials Science, Japan Advanced Institute of Science and Technology, Asahidai, Nomicity, Ishikawa, Japan. Electronic address:

Site-directed RNA editing (SDRE) holds significant promise for treating genetic disorders resulting from point mutations. Gene therapy, for common genetic illnesses is becoming more popular and, although viable treatments for genetic disorders are scarce, stop codon mutation-related conditions may benefit from gene editing. Effective SDRE generally depends on introducing many guideRNA molecules relative to the target gene; however, large ratios cannot be achieved in the context of gene therapy applications.

View Article and Find Full Text PDF

CellREADR: An ADAR-based RNA sensor-actuator device.

Methods Enzymol

January 2025

Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States; Department of Biomedical Engineering, Duke University, Durham, NC, United States. Electronic address:

RNAs are central mediators of genetic information flow and gene regulation that underlie diverse cell types and cell states across species. Thus, methods that can sense and respond to RNA profiles in living cells will have broad applications in biology and medicine. CellREADR - Cell access through RNA sensing by Endogenous ADAR (adenosine deaminase acting on RNA), is a programmable RNA sensor-actuator technology that couples the detection of a cell-defining RNA to the translation of an effector protein to monitor and manipulate the cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!