Depending on the storage mechanisms, organic field-effect transistor (OFET) memory is usually divided into floating gate memory, ferroelectric memory, and polymer-electret-based memory. In this work, a new type of nonvolatile OFET memory is proposed by simply blending a p-type semiconductor and a n-type semiconductor without using an extra trapping layer. The results show that the memory window can be effectively modulated by the dopant concentration of the n-type semiconductor. With the addition of a 5% n-type semiconductor, blending devices exhibit a large memory window up to 57.7 V, an ON/OFF current ratio (/) ≈ 10, and a charge retention time of over 10 years, which is comparable or even better than those of most of the traditional OFET memories. The discontinuous n-type semiconductor is set as a charge-trapping center for charge storage due to the quantum well-like organic heterojunctions. The generalization of this method is also investigated in other organic systems. Moreover, the blend devices are also applied to optical memory and show multilevel optical storage, which are further scaled up to 8 × 8 array to map up two-dimensional (2D) optical images with long-term retention and reprogramming characteristic. The results reveal that the novel system design has great potential application in the field of digital image memory and photoelectronic system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c09221 | DOI Listing |
Small
January 2025
Key Lab of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.
N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced.
View Article and Find Full Text PDFACS Nano
January 2025
College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China.
Van der Waals (vdW) contact has been widely regarded as one of the most potential strategies for exploiting low-resistance metal-semiconductor junctions (MSJs) based on atomically thin transition-metal dichalcogenides (TMDs), but this method is still not efficient due to weak metal-TMD interfacial interactions. Therefore, an understanding of interfacial interactions between metals and TMDs is essential for achieving low-resistance contacts with weak Fermi level pinning (FLP). Herein, we report how the interfacial interactions between metals and TMDs affect the electrical contacts by considering more than 90 MSJs consisting of a semiconducting TMD channel and different types of metal electrodes, including bulk metals, MXenes, and metallic TMDs.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
Polymeric mixed ionic-electronic conductors (PMIECs) are gaining significant attention due to their potential applications in organic electrochemical transistors (OECTs). However, the performance of n-type OECTs still lags behind that of their p-type counterparts. Here, the structure-performance correlation of fused bithiophene imide dimer (BTI2)-based PMIECs is systematically investigated with the backbone evaluation from acceptor-strong donor (A-SD) to acceptor-donor (A-D), to acceptor-weak donor (A-WD), to acceptor-weak acceptor (A-WA), and finally to A-A structures.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry and Biochemistry, Fordham University, Bronx, New York 10458, United States.
The optoelectronic properties of pyrene diimides (PyDIs) are of strategic interest given the successful application of similar rylene diimides as n-type organic semiconductors in a variety of organic electronics. We present an improved synthesis for 1,5,6,10-pyrene diimide and the first report of its isomer, 1,8,9,10-pyrene diimide. We demonstrate the effect of imide placement on the core structure, optical properties, and electron affinities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!