A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Non-invasive Brain Delivery and Efficacy of BDNF in APP/PS1 Transgenic Mice as a Model of Alzheimer's Disease. | LitMetric

Non-invasive Brain Delivery and Efficacy of BDNF in APP/PS1 Transgenic Mice as a Model of Alzheimer's Disease.

Med Res Arch

Department of Pharmaceutical Chemistry, The University of Kansas, 2095 Constant Avenue, Lawrence, Kansas 66047 USA.

Published: February 2020

Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) have been demonstrated for their potential as a neuroregenerative treatment of Alzheimer's disease (AD). Unfortunately, most proteins cannot be effectively delivered into the brain from the blood stream due to the presence of the blood-brain barrier (BBB). In this study, we delivered BDNF using ADTC5 as BBB modulator (BBBM) into the brains of transgenic APP/PS1 mice, a mouse model for AD. As controls, two groups of APP/PS1 mice were treated with BDNF alone and vehicle, respectively. All three groups were subjected to behavioral/cognitive assessments in Y-maze and novel object recognition (NOR) tests as well as evaluation of the brain markers activated by BDNF. The results showed that BDNF + ADTC5 group performed significantly better in both the Y-maze and NOR assessments compared to mice that received BDNF alone or vehicle. In addition, significant upregulations of NG2 receptors as well as EGR1 and ARC mRNA transcripts were observed in the brain cortex of mice treated with BDNF + ADTC5, further indicating the efficacy of delivered BDNF in the brain. There were high plaque loads in all groups of mice, suggesting no influence of BDNF on the plaque formation. In summary, ADTC5 can deliver BDNF into the brains of APP/PS1 mice and the activity of BDNF in improving cognitive function was likely due to improvement in synaptic plasticity via NG2 glia cells and not by reducing the plaque load.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7302105PMC
http://dx.doi.org/10.18103/mra.v8i2.2043DOI Listing

Publication Analysis

Top Keywords

bdnf
12
bdnf adtc5
12
app/ps1 mice
12
alzheimer's disease
8
delivered bdnf
8
mice treated
8
treated bdnf
8
bdnf vehicle
8
mice
7
non-invasive brain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!