Spatial distribution and habitat selection are integral to the study of animal ecology. Habitat selection may optimize the fitness of individuals. Hutchinsonian niche theory posits the fundamental niche of species would support the persistence or growth of populations. Although niche-based species distribution models (SDMs) and habitat suitability models (HSMs) such as maximum entropy (Maxent) have demonstrated fair to excellent predictive power, few studies have linked the prediction of HSMs to demographic rates. We aimed to test the prediction of Hutchinsonian niche theory that habitat suitability (i.e., likelihood of occurrence) would be positively related to survival of American beaver (), a North American semi-aquatic, herbivorous, habitat generalist. We also tested the prediction of ideal free distribution that animal fitness, or its surrogate, is independent of habitat suitability at the equilibrium. We estimated beaver monthly survival probability using the Barker model and radio telemetry data collected in northern Alabama, United States from January 2011 to April 2012. A habitat suitability map was generated with Maxent for the entire study site using landscape variables derived from the 2011 National Land Cover Database (30-m resolution). We found an inverse relationship between habitat suitability index and beaver survival, contradicting the predictions of niche theory and ideal free distribution. Furthermore, four landscape variables selected by American beaver did not predict survival. The beaver population on our study site has been established for 20 or more years and, subsequently, may be approaching or have reached the carrying capacity. Maxent-predicted increases in habitat use and subsequent intraspecific competition may have reduced beaver survival. Habitat suitability-fitness relationships may be complex and, in part, contingent upon local animal abundance. Future studies of mechanistic SDMs incorporating local abundance and demographic rates are needed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7297760 | PMC |
http://dx.doi.org/10.1002/ece3.6239 | DOI Listing |
Philos Trans R Soc Lond B Biol Sci
January 2025
Institute of Zoology, Zoological Society of London, London NW1 4RY, UK.
The Living Planet Index (LPI) is a leading global biodiversity indicator based on vertebrate population time series. Since it was first developed over 25 years ago, the LPI has been widely used to indicate trends in biodiversity globally, primarily reported every two years in the Living Planet Report. Based on relative abundance, a sensitive metric of biodiversity change, the LPI has also been applied as a tool for informing policy and used in assessments for several multilateral conventions and agreements, including the Convention on Biological Diversity 2010 Biodiversity Target and Aichi targets.
View Article and Find Full Text PDFSci Rep
January 2025
School of Pharmacy, Chengdu University of TCM, Chengdu, 611137, China.
Habitat requirements and species' ecological suitability are essential conditions for species conservation and management. Under the influence of different environmental variables, assessing the habitat quality of medicinal plants is an important issue to ensure the quality of medicinal plants and protect biodiversity. This study explores the impact of environmental variables on the distribution of Astragalus mongholicus Bunge (A.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str, Krakow, 31-425, Poland.
Tree species through aboveground biomass and roots are a key factors influencing the quality and quantity of soil organic matter. Our study aimed to determine the stability of soil organic matter in Luvisols under the influence of five different tree species. The study areas were located 25 km north of Krakow, in southern Poland.
View Article and Find Full Text PDFSci Rep
January 2025
School of Mathematics and Computer, Wuhan Polytechnic University, Wuhan, 430048, China.
The rapid changes in the global environment have led to an unprecedented decline in biodiversity, with over 28% of species facing extinction. This includes snakes, which are key to ecological balance. Detecting snakes is challenging due to their camouflage and elusive nature, causing data loss and feature extraction difficulties in ecological monitoring.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China.
Understanding plant adaptations in extreme environments is crucial, as these adaptations often confer advantages for survival. However, a significant gap exists regarding the genetic mechanisms underlying these adaptations and their responses to human-induced rapid environmental change (HIREC). This study addresses the question of whether genetic convergence occurs among plants with similar adaptive features, specifically focusing on isobilateral leaves in mangrove species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!