As a part of our continuous structure-activity relationship (SAR) studies on 1-(quinazolin-4-yl)-1-(4-methoxyphenyl)ethan-1-ols, the synthesis of derivatives and their cytotoxicity against the human lung cancer cell line A549 were explored. This led to the discovery of 1-(2-(furan-3-yl)quinazolin-4-yl)-1-(4-methoxyphenyl)ethan-1-ol (PVHD303) with potent antiproliferative activity. PVHD303 disturbed microtubule formation at the centrosomes and inhibited the growth of tumors dose-dependently in the HCT116 human colon cancer xenograft model .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294709PMC
http://dx.doi.org/10.1021/acsmedchemlett.0c00119DOI Listing

Publication Analysis

Top Keywords

discovery potent
4
potent anticancer
4
anticancer agent
4
agent pvhd303
4
pvhd303 activity
4
activity continuous
4
continuous structure-activity
4
structure-activity relationship
4
relationship sar
4
sar studies
4

Similar Publications

Protein nanoparticles as potent delivery vehicles for polycytosine RNA-binding protein one.

World J Diabetes

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, Guangdong Province, China.

Ma recently reported in the that ferroptosis occurs in osteoblasts under high glucose conditions, reflecting diabetes pathology. This condition could be protected by the upregulation of the gene encoding polycytosine RNA-binding protein 1 (PCBP1). Additionally, Ma used a lentivirus infection system to express PCBP1.

View Article and Find Full Text PDF

Introduction: Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively.

View Article and Find Full Text PDF

This study presents a novel series of -acylated 1,2,4-triazol-5-amines and 1-pyrazol-5-amines, featuring a pyrazin-2-yl moiety, developed as covalent inhibitors of thrombin. These compounds demonstrated potent inhibitory activity, with derivatives and achieving IC values as low as 0.7 and 0.

View Article and Find Full Text PDF

Discovery of indole analogue Tc3 as a potent pyroptosis inducer and identification of its combination strategy against hepatic carcinoma.

Theranostics

January 2025

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, People's Republic of China.

Hepatic carcinoma, one of the most malignant cancers in the world, has limited success with immunotherapy and a poor prognosis in patients. While pyroptosis is considered as a promising immunotherapy strategy for tumors, it still suffers from a lack of effective inducers. We designed, synthesized and screened an indole analogue, , featuring a 2, 4-thiazolidinedione substituted indole scaffold.

View Article and Find Full Text PDF

Introduction: In response to continued public health emergency of antimicrobial resistance (AMR), a significant key strategy is the discovery of novel mycobacterial efflux-pump inhibitors (EPIs) as potential adjuvants in combination drug therapy. Interest in identifying new chemotypes which could potentially synergize with the existing antibiotics and can be deployed as part of a combination therapy. This strategy could delay the emergence of resistance to existing antibiotics and increase their efficacy against resistant strains of mycobacterial species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!