Post-fermentation fungal biomass waste provides a viable source for chitin. Cell wall chitin of filamentous fungi, and in particular its de-acetylated derivative chitosan, has a wide range of commercial applications. Although the cell wall of filamentous fungi comprises 10-30% chitin, these yields are too low for cost-effective production. Therefore, we aimed to identify the genes involved in increased chitin deposition by screening a collection of UV-derived cell wall mutants in . This screen revealed a mutant strain (RD15.4#55) that showed a 30-40% increase in cell wall chitin compared to the wild type. In addition to the cell wall chitin phenotype, this strain also exhibited sensitivity to SDS and produces an unknown yellow pigment. Genome sequencing combined with classical genetic linkage analysis identified two mutated genes on chromosome VII that were linked with the mutant phenotype. Single gene knockouts and subsequent complementation analysis revealed that an 8 bp deletion in NRRL3_09595 is solely responsible for the associated phenotypes of RD15.4#55. The mutated gene, which was named (), encodes an orthologue of Bypass of (), a negative regulator of transcription elongation. We propose that this conserved fungal protein is involved in preventing cell wall integrity signaling under non-inducing conditions, where loss of function results in constitutive activation of the cell wall stress response pathway, and consequently leads to increased chitin content in the mutant cell wall.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7285910PMC
http://dx.doi.org/10.1016/j.gene.2020.100028DOI Listing

Publication Analysis

Top Keywords

cell wall
36
wall chitin
12
wall
9
wall integrity
8
negative regulator
8
regulator transcription
8
chitin
8
chitin deposition
8
cell
8
filamentous fungi
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!