Background: The main goal of diabetes therapy is to control blood glucose levels.

Objectives: In this study, the effect of Matricaria chamomilla L. oil as an herbal agent, on therapeutic properties of poly L-lactic acid-based (PLLA) scaffold loaded with differentiated stem cells, is examined in the diabetic rabbit.

Methods: Adipose mesenchymal stem cells (AMSCs) were isolated from male New Zealand White rabbits and after seeding on the PLLA scaffold differentiated in the pancreatic region. In vivo differentiation of AMSCs toward pancreatic progenitor cells was evaluated by quantitative analysis of gene expressions and immunohistochemistry. Then, one normal and five diabetic groups including blank diabetic, scaffold, oil + scaffold, and differentiated cell + scaffold or oil + scaffold were assessed after 21 days of treatment. After the assessment, the diabetic groups were evaluated by clinical parameters and pancreatic histological sections.

Results: It was found that AMSCs were differentiated to insulin-producing cells (IPCs) in the pancreatic environment which then used for implantation. Blood glucose in the oil + scaffold, cell + scaffold, and oil + cell + scaffold groups showed a significant decrease after 21 days. In the above mentioned three groups, insulin secretion was increased significantly. Chamomile oil also caused a significant decrease in High-density lipoprotein (HDL), Low-density lipoprotein (LDL), and total cholesterol levels. According to histological sections results, in cell + scaffold and oil + cell + scaffold groups, β cells were significantly increased compared to blank diabetic group.

Conclusions: Together these data demonstrated chamomile oil along with in vivo-differentiated stem cell is a promising new treatment for diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7271296PMC
http://dx.doi.org/10.1007/s40200-020-00530-3DOI Listing

Publication Analysis

Top Keywords

differentiated stem
8
stem cell
8
matricaria chamomilla
8
chamomilla oil
8
blood glucose
8
plla scaffold
8
stem cells
8
diabetic groups
8
blank diabetic
8
cell + scaffold oil + cell + scaffold
8

Similar Publications

Air-liquid interface culture combined with differentiation factors reproducing intestinal cell structure formation in vitro.

Biol Open

January 2025

Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.

Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a systemic, chronic inflammatory disease characterized by altered levels of inflammatory cytokines. One of the key cytokines involved in the pathogenesis of RA is tumor necrosis factor α (TNF-α), which plays a crucial role in the differentiation of T cells and B cells and serves as a primary trigger of inflammation and joint damage in RA. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) have shown potential in alleviating the symptoms of RA.

View Article and Find Full Text PDF

The spatiotemporal changes of metabolites in Pinellia ternata at different development stages by MALDI-MSI.

Physiol Plant

January 2025

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

Pinellia ternata is an herb species in the Pinellia genus with significant economic value due to its medicinal properties. Understanding the accumulation and spatial distribution characteristics of metabolites during the development of the medicinal part, the rhizome of P. ternata (PR), provides a basis for targeted metabolic regulation and quality evaluation.

View Article and Find Full Text PDF

Mechanosensitivity is the ability of cells to sense and respond to mechanical stimuli. In order to do this, cells are endowed with different components that allow them to react to a broad range of stimuli, such as compression or shear forces, pressure, and vibrations. This sensing process, mechanosensing, is involved in fundamental physiological mechanisms, such as stem cell differentiation and migration, but it is also central to the development of pathogenic states.

View Article and Find Full Text PDF

Unlabelled: Hematopoietic stem and progenitor cells (HSPCs) arise only during embryonic development, and their identity specification, emergence from the floor of the dorsal aorta, and proliferation are all tightly regulated by molecular mechanisms such as signaling cues. Among these, Wnt signaling plays an important role in HSPC specification, differentiation, and self-renewal, requiring precise modulation for proper development and homeostasis. Wnt signaling is initiated when a Wnt ligand binds to cell surface receptors such as those encoded by the gene family, activating intracellular signaling pathways that regulate gene expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!