Purpose: The purpose of the study was to evaluate the possible protective effects of low dose sodium nitrate preconditioning on the peripheral neuropathy in streptozotocin (STZ)-induced diabetic model.

Methods: Male Wistar rats were randomly divided into five groups: control (no intervention), control treated sodium nitrate (100 mg/L in drinking water), diabetic (no intervention), diabetic treated NPH insulin (2-4 U), and diabetic treated sodium nitrate (100 mg/L in drinking water). Diabetes was induced by intraperitoneal injection of STZ (60 mg/kg). All interventions were done for 60 days immediately following diabetes confirmation. Thermal and mechanical algesia thresholds were measured by means of hot-plate test, von Frey test, and tail-withdrawal test before the diabetic induction and after diabetes confirmation. At the end of the experiment, serum NOx level and serum insulin level were assessed. Blood glucose concentration and body weight have recorded at the base and duration of the experiment.

Results: Both hypoalgesia, hyperalgesia along with allodynia developed in diabetic rats. Significant alterations including, decrease in tail withdrawal latency (30th day), decreased mechanical threshold (60th day), and an increase in hot plate latency (61st day) were displayed in diabetic rats compared to control rats. Nitrate and insulin preconditioning produced protective effects against diabetes-induced peripheral neuropathy. Data analysis also showed a significant increase in glucose level as well as a considerable reduction in serum insulin and body weight of diabetic rats, which restored by both insulin and nitrate preconditioning.

Conclusion: Sodium nitrate preconditioning produces a protective effect in diabetic neuropathy, which may be mediated by its antihyperglycemic effects and increased serum insulin level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7270373PMC
http://dx.doi.org/10.1007/s40200-019-00481-4DOI Listing

Publication Analysis

Top Keywords

sodium nitrate
20
nitrate preconditioning
12
serum insulin
12
diabetic rats
12
diabetic
9
wistar rats
8
protective effects
8
peripheral neuropathy
8
treated sodium
8
nitrate 100 mg/l
8

Similar Publications

In the present work, a diazonium salt is prepared by a diazonium reaction of sulfamerazine in the presence of aqueous hydrochloric acid and sodium nitrate. Structural confirmation of azo compounds synthesize is achieved by mass spectrometry, infrared spectroscopy, and H, C nuclear magnetic resonance. The sample geometry is derived using Density Functional Theory (DFT) and DT-DFT applied to the basis set B3LYPL6-311 + G(d,p).

View Article and Find Full Text PDF

Root rot is a serious soil-borne disease in the field of Rehmannia glutinosa with continuous cropping obstacle, which se-riously affects the quality and yield of Rehmanniae Radix. In this study, a fungal strain causing root rot of R. glutinosa was isolated from the rhizosphere soil of R.

View Article and Find Full Text PDF

THE EFFECTS OF TECHNICAL STEPS USED IN EXISTING SANITATION HELMINTH TEST METHODS ON ASCARIS SUUM EGG RECOVERY FROM PIG FECES.

J Parasitol

December 2024

Water, Sanitation and Hygiene Research and Development Centre, Howard College Campus, University of KwaZulu-Natal, Durban 4041, South Africa.

Many technical aspects are associated with helminth egg isolation and enumeration that affect how efficiently eggs are recovered from samples. This study investigated Ascaris egg recoverability when samples were washed with or without pressure, and from different sample types (water, effluent, ventilated improved pit latrine [VIP], urine diversion dry toilet [UDDT], dried, fatty, and septic tank sludges, and soil) when processed with water, ammonium bicarbonate, and 7X®. We also looked at egg recovery after flotation with zinc sulfate, magnesium sulfate, and sodium nitrate at specific gravities of 1.

View Article and Find Full Text PDF

Various sanitation methods to recover helminth eggs are currently in use; however, no international standard exists. Development of such a method first involves testing the effects of all reagents used in current methods on helminth egg viability to determine whether these chemicals affect the test organism. This study was conducted to investigate the effects on viability and development of Ascaris suum eggs when exposed for various periods to wash solutions (water, ammonium bicarbonate, Tween® 20, Tween® 80, Triton® X-100, Sunlight® Liquid, bentonite, and 7X®), flotation solutions (zinc sulfate, magnesium sulfate, sodium nitrate, brine, and sucrose), extraction solutions (10% formalin, acetoacetic buffer, acid-alcohol, ethyl acetate, and diethyl ether), extraction combinations (10% formalin + ethyl acetate, 10% formalin + diethyl ether, acetoacetic buffer + ethyl acetate, acetoacetic buffer + diethyl ether, and acid-alcohol + ethyl acetate), and incubation solutions (water, 0.

View Article and Find Full Text PDF

In this work, we have investigated the thermal features of hydrogen peroxide-based energetic materials formulations. Initial research has shown that both the auxiliary oxidiser (sodium nitrate, potassium nitrate or calcium nitrate) and sensitising agent (glass microspheres) have significant influence on the rate of hydrogen peroxide decay in such formulations. In terms of the thermal features of the tested energetic materials, a similar and significant influence of the auxiliary oxidising agent and sensitising agent choice was observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!