The use of graph theory models is widespread in biological pathway analyses as it is often desired to evaluate the position of genes and proteins in their interaction networks of the biological systems. In this article, we argue that the common standard graph centrality measures do not sufficiently capture the informative topological organizations of the pathways, and thus, limit the biological inference. While key pathway elements may appear both upstream and downstream in pathways, standard directed graph centralities attribute significant topological importance to the upstream elements and evaluate the downstream elements as having no importance.We present a directed graph framework, Source/Sink Centrality (SSC), to address the limitations of standard models. SSC separately measures the importance of a node in the upstream and the downstream of a pathway, as a sender and a receiver of biological signals, and combines the two terms for evaluating the centrality. To validate SSC, we evaluate the topological position of known human cancer genes and mouse lethal genes in their respective KEGG annotated pathways and show that SSC-derived centralities provide an effective framework for associating higher positional importance to the genes with higher importance from a priori knowledge. While the presented work challenges some of the modeling assumptions in the common pathway analyses, it provides a straight-forward methodology to extend the existing models. The SSC extensions can result in more informative topological description of pathways, and thus, more informative biological inference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296696 | PMC |
http://dx.doi.org/10.1186/s13040-020-00214-x | DOI Listing |
Eur J Neurosci
January 2025
Department of Ear, Nose, and Throat, The First Affiliated of Soochow University, Suzhou, China.
This study aimed to investigate the topological properties of brain functional networks in patients with tinnitus of varying durations. A total of 51 tinnitus patients (divided into recent-onset tinnitus (ROT) and persistent tinnitus (PT) groups) and 27 healthy controls (HC) were recruited. All participants underwent resting-state functional MRI and audiological assessments.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
Objectives: Parkinson's disease (PD) is characterized by olfactory dysfunction (OD) and cognitive deficits at its early stages, yet the link between OD and cognitive deficits is also not well-understood. This study aims to examine the changes in the olfactory network associated with OD and their relationship with cognitive function in de novo PD patients.
Methods: A total of 116 drug-naïve PD patients and 51 healthy controls (HCs) were recruited for this study.
Ann Med
December 2025
School of Special Education and Rehabilitation, BinZhou Medical University, Yantai, China.
Background: Individuals with alcohol use disorder (AUD) often experience symptoms such as anxiety, depression, and decreased sleep quality. Although these are not diagnostic criteria, they may increase dependence risk and complicate treatment. This study aims to analyze comorbidities and their complex relationships in AUD patients through epidemiological surveys and network analysis.
View Article and Find Full Text PDFNeurol Sci
January 2025
Epilepsy Center, Department of Neurology, West China Hospital of Sichuan University, Chengdu, China.
This study intents to detect graphical network features associated with seizure relapse following antiseizure medication (ASM) withdrawal. Twenty-four patients remaining seizure-free (SF-group) and 22 experiencing seizure relapse (SR-group) following ASM withdrawal as well as 46 matched healthy participants (Control) were included. Individualized morphological similarity network was constructed using T1-weighted images, and graphic metrics were compared between groups.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Clinical Geriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden.
Cognition plays a central role in the diagnosis and characterization of dementia with Lewy bodies (DLB). However, the complex associations among cognitive deficits in different domains in DLB are largely unknown. To characterize these associations, we investigated and compared the cognitive connectome of DLB patients, healthy controls (HC), and Alzheimer's disease patients (AD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!