In this work, we propose and demonstrate the concept of remote reflections, which help to multiply the photon propagations for increasing the light extraction efficiency (LEE) for both transverse magnetic (TM)- and transverse electric (TE)-polarized light. The remote reflection is enabled by using a remote-metal-reflector-based air cavity extractor. According to our study, the remote reflections can significantly avoid the optical absorption when compared with the conventional inclined-sidewall-shaped deep-ultraviolet light-emitting diodes with the metal Al reflector on the inclined sidewalls. As a result, the optical power for our proposed devices has been significantly enhanced by 55% experimentally. Numerical simulations further reveal that the remote metal reflector not only favors more total internal refection on the inclined sidewalls but also supports additional light escaped channels for enhancing the LEE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.393166 | DOI Listing |
Here, we systematically investigate the effect of mesa/sub-mesa sidewall engineering on single-junction (SJ) and high-voltage (HV) deep ultraviolet light-emitting diodes (DUV LEDs). The configuration of ∼46° inclined angle of the mesa/sub-mesa sidewall and Al reflector optimally promotes light extraction of SJ/HV DUV LEDs. We further observe substantial improvements in the self-heating and external quantum efficiency (EQE) droop effects of HV DUV LEDs with an increasing number of sub-mesas.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences, Changchun 130033, China.
Since surface relief transmission gratings have very strict requirements on operators and use environment, according to the semiconductor laser external cavity spectral beam combining system, this paper proposes a design scheme for a semiconductor laser array spectral beam combining system based on the grating-external cavity. The finite element approach was used to create a wideband, high-efficiency fill-in multilayer dielectric transmission grating structure for a high-power spectrum beam combining system. The incidence angle, ridge height, duty cycle, and sidewall inclination angle of the transmission grating were tuned and evaluated, and a link between the transmission grating's diffraction efficiency and grating characteristics was discovered.
View Article and Find Full Text PDFGaN-based micro-LEDs are applied to visible light communication due to their high modulation bandwidth with reduced chip size. It requires a deep understanding of recombination processes and their impact on the bandwidth, which is mainly determined by the carrier lifetime. We employed confocal time-resolved photoluminescence (TRPL) to characterize the variation of carrier lifetime with optical excitation power density on micro-LEDs.
View Article and Find Full Text PDFIn this Letter, an omni-directional reflector (ODR) with a thin hybrid dielectric layer (hybrid-ODR) is proposed to enhance the light extraction efficiency (LEE) for inclined-sidewall-shaped AlGaN-based deep ultraviolet light-emitting diode (DUV LED) by inserting a thin diamond with high refraction index into a conventional Al/AlO-based ODR. The three-dimensional finite-difference time-domain (3D FDTD) simulation results show that the LEE of TM-polarized light for the DUV LED with hybrid-ODR is enhanced by 18.5% compared with Al/AlO-based ODR.
View Article and Find Full Text PDFIn this work, we hybridize an air cavity reflector and a nanopatterned sapphire substrate (NPSS) for making an inclined-sidewall-shaped deep ultraviolet micro light-emitting diode (DUV micro-LED) array to enhance the light extraction efficiency (LEE). A cost-effective hybrid photolithography process involving positive and negative photoresist (PR) is explored to fabricate air-cavity reflectors. The experimental results demonstrate a 9.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!