Metagrating is a new concept for wavefront manipulation that, unlike phase gradient metasurfaces, does not suffer from low efficiency and also has a less complicated fabrication process. In this paper, a compound metallic grating (a periodic metallic structure with more than one slit in each period) is proposed for anomalous reflection. We propose an analytical method for analyzing the electromagnetic response of this grating. Closed-form and analytical expressions are presented for the reflection coefficients of zeroth diffracted order and also higher diffracted orders. The proposed method is verified against full-wave simulations and the results are in excellent agreement. Thanks to the geometrical asymmetry of compound metallic grating, it can be used for designing anomalous reflection at the normal incidence. Given analytical expressions for reflection coefficients, we design a perfect anomalous reflector for a TM polarized plane wave via transferring all the incident power to ( - 1) diffraction order . The structure designed in this study has an unprecedented near-to-unitary efficiency of 99.9%. Finally, a multi-element compound metallic grating is proposed for reflecting the normal incidence to angles of below 30, which is a challenging accomplishment. This excellent performance of compound metallic grating shows its high potential for microwave and terahertz wavefront manipulation applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.393137DOI Listing

Publication Analysis

Top Keywords

compound metallic
20
metallic grating
16
anomalous reflection
12
perfect anomalous
8
wavefront manipulation
8
analytical expressions
8
reflection coefficients
8
normal incidence
8
metallic
6
reflection
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!