Bovine tuberculosis is an airborne infectious disease caused by organisms of the (MTB) complex. Mycolic acid (MA) is the main lipid component of the cell membrane of MTB. It is non-enzymatically reduced by NAD(P)H and further produces reactive oxygen species (ROS), which can cause oxidative stress in human cells. N-acetylcysteine (NAC) is a synthetic precursor of glutathione (GSH) and exhibits anti-ROS activity. However, the underlying mechanisms of its protective properties remain uncertain. Herein, after pre-incubation of RAW264.7 cells with NAC, the factors associated with apoptosis and autophagy were measured. Mechanistically, NAC could reduce MA-induced expression of pro-apoptotic and pro-autophagy proteins. At the mRNA level, NAC can inhibit AMPK and activate mTOR expression. The results indicate that NAC might regulate autophagy in RAW264.7 cells through the AMPK/mTOR pathway. To further prove the effect of NAC on MA, ICR mice were used to evaluate the lung injury. Hematoxylin-eosin (HE) staining was performed on the lung. The results show that NAC could reduce cell injury induced by MA. In conclusion, our research showed that NAC attenuates apoptosis and autophagy in response to incubation with mycolic acid. Bovine tuberculosis is an airborne infectious disease caused by organisms of the (MTB) complex. Mycolic acid (MA) is the main lipid component of the cell membrane of MTB. It is non-enzymatically reduced by NAD(P)H and further produces reactive oxygen species (ROS), which can cause oxidative stress in human cells. N-acetylcysteine (NAC) is a synthetic precursor of glutathione (GSH) and exhibits anti-ROS activity. However, the underlying mechanisms of its protective properties remain uncertain. Herein, after pre-incubation of RAW264.7 cells with NAC, the factors associated with apoptosis and autophagy were measured. Mechanistically, NAC could reduce MA-induced expression of pro-apoptotic and pro-autophagy proteins. At the mRNA level, NAC can inhibit AMPK and activate mTOR expression. The results indicate that NAC might regulate autophagy in RAW264.7 cells through the AMPK/mTOR pathway. To further prove the effect of NAC on MA, ICR mice were used to evaluate the lung injury. Hematoxylin-eosin (HE) staining was performed on the lung. The results show that NAC could reduce cell injury induced by MA. In conclusion, our research showed that NAC attenuates apoptosis and autophagy in response to incubation with mycolic acid.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7324858 | PMC |
http://dx.doi.org/10.33073/pjm-2020-026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!