Cell survival during the early stages of transplantation and before new blood vessels formation is a major challenge in translational applications of 3D bioprinted tissues. Supplementing oxygen (O ) to transplanted cells via an O generating source such as calcium peroxide (CPO) is an attractive approach to ensure cell viability. Calcium peroxide also produces calcium hydroxide that reduces the viscosity of bioinks, which is a limiting factor for bioprinting. Therefore, adapting this solution into 3D bioprinting is of significant importance. In this study, a gelatin methacryloyl (GelMA) bioink that is optimized in terms of pH and viscosity is developed. The improved rheological properties lead to the production of a robust bioink suitable for 3D bioprinting and controlled O release. In addition, O release, bioprinting conditions, and mechanical performance of hydrogels having different CPO concentrations are characterized. As a proof of concept study, fibroblasts and cardiomyocytes are bioprinted using CPO containing GelMA bioink. Viability and metabolic activity of printed cells are checked after 7 days of culture under hypoxic condition. The results show that the addition of CPO improves the metabolic activity and viability of cells in bioprinted constructs under hypoxic condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7500045 | PMC |
http://dx.doi.org/10.1002/adhm.201901794 | DOI Listing |
ACS Appl Bio Mater
January 2025
Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, 5009 Bergen, Norway.
Bioprinting of nanohydroxyapatite (nHA)-based bioinks has attracted considerable interest in bone tissue engineering. However, the role and relevance of the physicochemical properties of nHA incorporated in a bioink, particularly in terms of its printability and the biological behavior of bioprinted cells, remain largely unexplored. In this study, two bioinspired nHAs with different chemical compositions, crystallinity, and morphologies were synthesized and characterized: a more crystalline, needle-like Mg-doped nHA (N-HA) and a more amorphous, rounded Mg- and CO-doped nHA (R-HA).
View Article and Find Full Text PDFRegen Biomater
November 2024
Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.
View Article and Find Full Text PDFLiver tissue engineering offers potential in liver transplantation, while the development of hydrogels for scalable scaffolds incorporating natural components and effective functionalities is ongoing. Here, we propose a novel microfluidic 3D printing hydrogel derived from decellularized fish liver extracellular matrix for liver regeneration. By decellularizing fish liver and combining it with gelatin methacryloyl, the hydrogel scaffold retains essential endogenous growth factors such as collagen and glycosaminoglycans.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada.
Bentonite clay nanoparticles assume a pivotal role in 3D bioprinting and tissue engineering by augmenting the mechanical rigidity and biological efficacy of hydrogels. In this investigation, Span80 was employed as a surfactant to facilitate the synthesis of uniformly sized bentonite nanoparticles measuring approximately 700 nm in diameter. The resultant hybrid hydrogel displaced a marked increase in compressive modulus, achieving a peak value of 17.
View Article and Find Full Text PDFMicrosyst Nanoeng
January 2025
School of Engineering, University of Southern Queensland, Springfield, QLD, 4300, Australia.
Various hydrogels have been explored to create minimally invasive microneedles (MNs) to extract interstitial fluid (ISF). However, current methods are time-consuming and typically require 10-15 min to extract 3-5 mg of ISF. This study introduces two spiral-shaped swellable MN arrays: one made of gelatin methacryloyl (GelMA) and polyvinyl alcohol (PVA), and the other incorporating a combination of PVA, polyvinylpyrrolidone (PVP), and hyaluronic acid (HA) for fast ISF extraction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!