Shewanella oneidensis MR-1 was cultured on electrodes in electrochemical flow cells (EFCs), and transcriptome profiles of electrode-attached cells grown under electrolyte-flow conditions were compared with those under static (nonflow) conditions. Results revealed that, along with genes related to c-type cytochrome maturation (e.g., dsbD), the SO_3096 gene encoding a putative extracytoplasmic function (ECF) sigma factor was significantly upregulated under electrolyte-flow conditions. Compared to wild-type MR-1 (WT), an SO_3096-deletion mutant (∆SO_3096) showed impaired biofilm formation and decreased current generation in EFCs, suggesting that SO_3096 plays critical roles in the interaction of MR-1 cells with electrodes under electrolyte-flow conditions. We also compared transcriptome profiles of WT and ∆SO_3096 grown in EFCs, confirming that many genes upregulated under the electrolyte-flow conditions, including dsbD, are regulated by SO_3096. LacZ reporter assays showed that transcription from a promoter upstream of dsbD is activated by SO_3096. Measurement of current generated by a dsbD-deletion mutant revealed that this gene is essential for the transfer of electrons to electrodes. These results indicate that the SO_3096 gene product facilitates c-type cytochrome maturation and current generation under electrolyte-flow conditions. The results also offer ecophysiological insights into how Shewanella regulates extracellular electron transfer to solid surfaces in the natural environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.15131 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!