A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Adsorption Characteristics of Allura Red AC onto Sawdust and Hexadecylpyridinium Bromide-Treated Sawdust in Aqueous Solution. | LitMetric

The Allura red AC (ARAC) dye adsorption onto natural sawdust (NSD) and hexadecylpyridinium bromide-treated sawdust (MSD) was investigated in aqueous solution as a function of contact time, solution pH, particle size, adsorbent dosage, dye concentration, temperature, and ionic strength. The adsorbents were characterized by Fourier transform infrared spectroscopy and X-ray diffraction crystallography. The dye adsorption onto both adsorbents was confirmed by field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. The maximum dye adsorption was found within 120 min at pH 2.0 for NSD and pH 3.0 for MSD, respectively, with a particle size of 0-75 μm and an adsorbent dosage of 0.07 g/50 mL ARAC dye solution (50 μmol/L). The batch adsorption kinetic data were followed by the pseudo-second-order kinetic model rather than the pseudo-first-order and Elovich kinetic models. Equilibrium adsorption isotherms were explained by the Langmuir isotherm model, and the maximum extent of adsorption was found to be 52.14 μmol/g for NSD and 151.88 μmol/g for MSD at 55 °C. The values of activation energy ( ) and thermodynamic parameters (Δ , Δ , Δ , Δ°, Δ° and Δ°) proved that the ARAC dye adsorption onto both adsorbents NSD and MSD is a spontaneous-endothermic physisorption process. ARAC (98-99%) was released from dye-loaded adsorbents in aqueous solution (pH ≥ 12) within 120 min. The adsorbents NSD and MSD were reused for a second time without significant loss of their adsorption efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288719PMC
http://dx.doi.org/10.1021/acsomega.0c01493DOI Listing

Publication Analysis

Top Keywords

dye adsorption
16
aqueous solution
12
arac dye
12
nsd msd
12
adsorption
9
allura red
8
hexadecylpyridinium bromide-treated
8
bromide-treated sawdust
8
particle size
8
adsorbent dosage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!