A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Movement and Fate of 2,4-D in Urban Soils: A Potential Environmental Health Concern. | LitMetric

Movement and Fate of 2,4-D in Urban Soils: A Potential Environmental Health Concern.

ACS Omega

Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales 2308, Australia.

Published: June 2020

The fate and movement of 2,4-dichlorophenoxyacetic acid (2,4-D), in terms of sorption-desorption and leaching potential, were evaluated in urban soils following the batch experimental method. The sorption kinetics of 2,4-D in soils followed both "fast" and "slow" sorption processes that could be well described by a pseudo-second-order kinetics model, suggesting that 2,4-D was partitioned into soil organic matter and clay surfaces, and eventually diffused into soil micropores. The sorption isotherms were linear, following both Langmuir and Freundlich models. Partially decomposed or undecomposed organic matter present in urban soils decreased sorption and increased desorption of 2,4-D. Also, sorption of 2,4-D increased with an increase in the contents of clay and Al and Fe oxides, whereas sand and alkaline pH increased the desorption process. The lower calculated values suggest that 2,4-D is highly mobile in urban soils than in agricultural soils. The calculated values of groundwater ubiquity score, leachability index, and hysteresis index indicated that the herbicide is highly prone to leach out from surface soil to groundwater which might affect the quality of potable water. The present study clearly suggests that 2,4-D must be judiciously applied in the urban areas in order to minimize the potential health and environmental risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7288697PMC
http://dx.doi.org/10.1021/acsomega.0c01330DOI Listing

Publication Analysis

Top Keywords

urban soils
16
24-d
8
organic matter
8
increased desorption
8
calculated values
8
soils
6
urban
5
sorption
5
movement fate
4
fate 24-d
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!