The objective of the current paper is to evaluate the performances drop of a photovoltaic system composed of a new PV module conception without EVA encapsulation. After three years of operation under harsh atmospheric condition at Green Energy Park research facility, in the mid-south of Morocco, the system shows an energy drop around 1.8kWhe in one of its strings. For this reason, an inspection (in-situ and at the lab level) to evaluate and detect the source of this energy drop has been done using the IV-Curve, IR thermal and Electroluminescence. Results show that the Performance Ratio (PR) of the affected string reaches 13%. Besides, two modules from this last one showed a degradation rate (Rd) greater than 4.12 %. It has been found that the main cause of this energy drop is due to the presence of breakages and crack at the modules cells. Those deceases are caused by a bad manual cleaning, as well as, for the nature of the modules, without EVA protection against the mechanical shocks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7286963PMC
http://dx.doi.org/10.1016/j.heliyon.2020.e04079DOI Listing

Publication Analysis

Top Keywords

energy drop
12
degradation performance
4
performance analysis
4
analysis monocrystalline
4
monocrystalline system
4
system eva
4
eva encapsulating
4
encapsulating semi-arid
4
semi-arid climate
4
climate objective
4

Similar Publications

Microelectronic Structure and Doping Nonuniformity of Phosphorus-Doped CdSeTe Solar Cells.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

Optimizing group-V doping and Se alloying are two main focuses for advancing CdTe photovoltaic technology. We report on nanometer-scale characterizations of microelectronic structures of phosphorus (P)-doped CdSeTe devices using a combination of two atomic force microscopy-based techniques, namely, Kelvin probe force microscopy (KPFM) and scanning spreading resistance microscopy (SSRM). KPFM on device cross-section images distribution of the potential drop across the device.

View Article and Find Full Text PDF

Here, we report a synthesis of fluoroquinolones carrying a monoterpene moiety at the C7 position of aromatic structure. The minimal inhibitory concentrations of fluoroquinolone fused with trans-3-hydroxy-cis-myrtanylamine 18 against Staphylococcus aureus (MSSA isolates) were two- to eightfold lower compared to moxifloxacin, although fourfold higher against MRSA isolates. The fluoroquinolone fused with (-)-nopylamine 16 was four- to eightfold less active on MSSA compared to moxifloxacin, while had similar activity on MRSA.

View Article and Find Full Text PDF

The escalating global energy demand necessitates enhanced oil recovery methods, particularly offshore. Biological nanotechnology offers sustainable, environment-friendly, and cost-effective alternatives to synthetic chemicals. This study explored the synthesis of polysaccharide-based nanoparticles (PNPs) from Corchorus olitorius leaves using a weak acid-assisted ultrasonic method and their application as nanocomposites for oil recovery.

View Article and Find Full Text PDF

Dropwise condensation (DWC) is a widely studied vapor-liquid phase-change process that has attracted significant research attention due to its exceptional energy transfer efficiency. Therefore, it is highly important to predict the heat transfer rate during DWC and the factors that affect it. This study presents a computational fluid dynamics (CFD) investigation on DWC heat transfer under diverse circumstances for a single droplet on inclined and rough surfaces with Wenzel structure.

View Article and Find Full Text PDF

Exploring the catalytic hydrothermal liquefaction of Namibian encroacher bush.

Sci Rep

January 2025

Process and Energy Department, University of Technology of Delft, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands.

An urgent ecological issue is the threat posed by invasive species, which are becoming more widespread especially in Africa. These encroachments damage ecosystems, pose a threat to biodiversity, and outcompete local plants and animals. This article focuses on converting Acacia Mellifera from Namibia, commonly known as encroacher bush (EB) into high-quality drop-in intermediates for the chemical and transport industry via hydrothermal liquefaction (HTL).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!