The presented analysis of multisite, multiplatform clinical oncology trial data sought to enhance quantitative utility of the apparent diffusion coefficient (ADC) metric, derived from diffusion-weighted magnetic resonance imaging, by reducing technical interplatform variability owing to systematic gradient nonlinearity (GNL). This study tested the feasibility and effectiveness of a retrospective GNL correction (GNC) implementation for quantitative quality control phantom data, as well as in a representative subset of 60 subjects from the ACRIN 6698 breast cancer therapy response trial who were scanned on 6 different gradient systems. The GNL ADC correction based on a previously developed formalism was applied to trace-DWI using system-specific gradient-channel fields derived from vendor-provided spherical harmonic tables. For quantitative DWI phantom images acquired in typical breast imaging positions, the GNC improved interplatform accuracy from a median of 6% down to 0.5% and reproducibility of 11% down to 2.5%. Across studied trial subjects, GNC increased low ADC (<1 µm/ms) tumor volume by 16% and histogram percentiles by 5%-8%, uniformly shifting percentile-dependent ADC thresholds by ∼0.06 µm/ms. This feasibility study lays the grounds for retrospective GNC implementation in multiplatform clinical imaging trials to improve accuracy and reproducibility of ADC metrics used for breast cancer treatment response prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7289257PMC
http://dx.doi.org/10.18383/j.tom.2019.00025DOI Listing

Publication Analysis

Top Keywords

gradient nonlinearity
8
retrospective correction
4
adc
4
correction adc
4
adc gradient
4
nonlinearity errors
4
errors multicenter
4
multicenter breast
4
breast dwi
4
dwi trials
4

Similar Publications

Background: MRI offers potential noninvasive detection of Alzheimer's micropathology. The AD hippocampus exhibits microscopic pathological changes such as tau tangles, iron accumulation and late-stage amyloid. Validating these changes from ultra-high-resolution ex-vivo MRI through histology is challenging due to nonlinear 3D deformations between MRI and histological samples.

View Article and Find Full Text PDF

An approach for load frequency control enhancement in two-area hydro-wind power systems using LSTM + GA-PID controller with augmented lagrangian methods.

Sci Rep

January 2025

Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, Kyiv, 03680, Ukraine.

This paper proposes an advanced Load Frequency Control (LFC) strategy for two-area hydro-wind power systems, using a hybrid Long Short-Term Memory (LSTM) neural network combined with a Genetic Algorithm-optimized PID (GA-PID) controller. Traditional PID controllers, while extensively used, often face limitations in handling the nonlinearities and uncertainties inherent in interconnected power systems, leading to slower settling time and higher overshoot during load disturbances. The LSTM + GA-PID controller mitigates these issues by utilizing LSTM's capacity to learn from historical data by using gradient descent to forecast the future disturbances, while the GA optimizes the PID parameters in real time, ensuring dynamic adaptability and improved control precision.

View Article and Find Full Text PDF

A fault diagnosis method of nonlinear analog circuits is proposed that combines the generalized frequency response function (GFRF) and the simplified least squares support vector machine (LSSVM). In this study, the harmonic signal is used as an input to estimate the GFRFs. To improve the estimation accuracy, the GFRFs of an analog circuit are solved directly using time-domain data.

View Article and Find Full Text PDF

: To examine the associations between gradients of average daily temperature and sunlight hours with daily steps over a 35-week period in school-aged children and to evaluate whether there were differences by sex. : We conducted a follow-up study involving 655 children (50.8% girls, mean age 10.

View Article and Find Full Text PDF

Maximum correntropy criterion (MCC) has been an important method in machine learning and signal processing communities since it was successfully applied in various non-Gaussian noise scenarios. In comparison with the classical least squares method (LS), which takes only the second-order moment of models into consideration and belongs to the convex optimization problem, MCC captures the high-order information of models that play crucial roles in robust learning, which is usually accompanied by solving the non-convexity optimization problems. As we know, the theoretical research on convex optimizations has made significant achievements, while theoretical understandings of non-convex optimization are still far from mature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!