Hydrogen, while being a potential energy solution, creates arguably the most important embrittlement problem in high-strength metals. However, the underlying hydrogen-defect interactions leading to embrittlement are challenging to unravel. Here, we investigate an intriguing hydrogen effect to shed more light on these interactions. By designing an in situ electron channeling contrast imaging experiment of samples under no external stresses, we show that dislocations (atomic-scale line defects) can move distances reaching 1.5 μm during hydrogen desorption. Combining molecular dynamics and grand canonical Monte Carlo simulations, we reveal that grain boundary hydrogen segregation can cause the required long-range resolved shear stresses, as well as short-range atomic stress fluctuations. Thus, such segregation effects should be considered widely in hydrogen research.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7274796PMC
http://dx.doi.org/10.1126/sciadv.aaz1187DOI Listing

Publication Analysis

Top Keywords

hydrogen desorption
8
hydrogen
6
origin micrometer-scale
4
micrometer-scale dislocation
4
dislocation motion
4
motion hydrogen
4
desorption hydrogen
4
hydrogen potential
4
potential energy
4
energy solution
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!