The loss of biodiversity is altering the structure of ecological networks; however, we are currently in a poor position to predict how these altered communities will affect the evolution of remaining populations. Theory on fitness landscapes provides a framework for predicting how selection alters the evolutionary trajectory and adaptive potential of populations, but often treats the network of interacting populations as a "black box." Here, we integrate ecological networks and fitness landscapes to examine how changes in food-web structure shape phenotypic evolution. We conducted a field experiment that removed a guild of larval parasitoids that imposed direct and indirect selection pressures on an insect herbivore. We then measured herbivore survival as a function of three key phenotypic traits to estimate directional, quadratic, and correlational selection gradients in each treatment. We used these selection gradients to characterize the slope and curvature of the fitness landscape to understand the direct and indirect effects of consumer loss on phenotypic evolution. We found that the number of traits under directional selection increased with the removal of larval parasitoids, indicating evolution was more constrained toward a specific combination of traits. Similarly, we found that the removal of larval parasitoids altered the curvature of the fitness landscape in such a way that tended to decrease the evolvability of the traits we measured in the next generation. Our results suggest that the loss of trophic interactions can impose greater constraints on phenotypic evolution. This indicates that the simplification of ecological communities may constrain the adaptive potential of remaining populations to future environmental change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7293086PMC
http://dx.doi.org/10.1002/evl3.170DOI Listing

Publication Analysis

Top Keywords

phenotypic evolution
16
larval parasitoids
12
ecological networks
8
remaining populations
8
fitness landscapes
8
adaptive potential
8
direct indirect
8
selection gradients
8
curvature fitness
8
fitness landscape
8

Similar Publications

Cutaneous melanoma is the deadliest form of skin cancer. Despite advancements in treatment, many patients still face poor outcomes. A deeper understanding of the mechanisms involved in melanoma pathogenesis is crucial for improving diagnosis and therapy.

View Article and Find Full Text PDF

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Multicellular organisms host a rich assemblage of associated microorganisms, collectively known as their "microbiomes". Microbiomes have the capacity to influence their hosts' fitnesses, but the conditions under which such influences contribute to evolution are not clear. This is due in part to a lack of a comprehensive theoretical framework for describing the combined effects of host and associated microbes on phenotypic variation.

View Article and Find Full Text PDF

Background: People with Alzheimer's disease (AD) exhibit varying clinical trajectories. There is a need to predict future AD-related outcomes such as morbidity and mortality using clinical profile at the point of care.

Objective: To stratify AD patients based on baseline clinical profiles (up to two years prior to AD diagnosis) and update the model after AD diagnosis to prognosticate future AD-related outcomes.

View Article and Find Full Text PDF

Population Genomics of Japanese Macaques (Macaca fuscata): Insights into Deep Population Divergence and Multiple Merging Histories.

Genome Biol Evol

January 2025

Faculty of Information Science and Technology, Hokkaido University, Kita-14, Nishi-9, Kita-ku, Sapporo, Hokkaido, Japan 060-0814.

The influence of long-term climatic changes such as glacial cycles on the history of living organisms has been a subject of research for decades, but the detailed population dynamics during the environmental fluctuations and their effects on genetic diversity and genetic load are not well understood on a genome-wide scale. The Japanese macaque (Macaca fuscata) is a unique primate adapted to the cold environments of the Japanese archipelago. Despite of the past intensive research for the Japanese macaque population genetics, the genetic background of Japanese macaques at the whole-genome level has been limited to a few individuals, and the comprehensive demographic history and genetic differentiation of Japanese macaques have been underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!