Epidemiological studies provide evidence that physical activity reduces the risk of cancer, particularly of breast cancer. However, little is known about the underlying molecular mechanisms as related to microRNAs. The goal of the herein presented study is to explore the involvement of miRNAs in beneficial effects exerted by physical activity in breast cancer prevention. Thirty subjects (mean age: 57.1 ± 14.7 years) underwent 45 minutes of treadmill walking under standardized conditions. The levels of extracellular miRNAs were evaluated in blood plasma before and after structured exercise by means of microarray analysis of 1,900 miRNAs identifying mostly modulated miRNAs. Structured exercise has been found to modulate the expression of 14 miRNAs involved in pathways relevant to cancer. The different expression of two miRNAs involved in breast cancer progression, i. e. up-regulation of miR-206 and down-regulation of anti-miR-30c, were the most striking effects induced by exercise. The biological effects of these miRNAs were investigated in MCF-7 human breast cancer cells. miR-206 transfection and anti-miR-30c silencing, inhibited cell growth and increased apoptosis of MCF-7 cells. Moreover, the combined use of the two miRNAs further enhanced apoptosis and induced growth arrest in the G1/S phase of cell cycle. Our results support that physical activity effectively change the expression of extracellular miRNAs. Specifically, miR-206 up-regulation and anti-miR-30c down-regulation act as suppressors in breast cancer cells. The evaluation of these miRNAs in blood can be used as non-invasive biomarkers for breast cancer prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275780PMC
http://dx.doi.org/10.18632/oncotarget.27609DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
physical activity
16
mirnas
10
cancer
8
cancer prevention
8
extracellular mirnas
8
structured exercise
8
expression mirnas
8
mirnas involved
8
cancer cells
8

Similar Publications

Background: Primary luminal breast cancer cells lose their identity rapidly in standard tissue culture, which is problematic for testing hormone interventions and molecular pathways specific to the luminal subtype. Breast cancer organoids are thought to retain tumor characteristics better, but long-term viability of luminal-subtype cases is a persistent challenge. Our goal was to adapt short-term organoids of luminal breast cancer for parallel testing of genetic and pharmacologic perturbations.

View Article and Find Full Text PDF

Background: Triple negative breast cancer (TNBC) belongs to the worst prognosis of breast cancer subtype probably because of distant metastasis to other organs, e.g. lungs.

View Article and Find Full Text PDF

Tumor microenvironment and immunotherapy for triple-negative breast cancer.

Biomark Res

December 2024

Department of Surgical Oncology, Affiliated Sir Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.

Triple-negative breast cancer (TNBC) is a subtype of breast cancer known for its high aggressiveness and poor prognosis. Conventional treatment of TNBC is challenging due to its heterogeneity and lack of clear targets. Recent advancements in immunotherapy have shown promise in treating TNBC, with immune checkpoint therapy playing a significant role in comprehensive treatment plans.

View Article and Find Full Text PDF

Introduction: Breast cancer is the leading cause of cancer amongst women in the United Kingdom, with implant-based reconstruction (IBR) using Acellular Dermal Matrices (ADM) gaining popularity for post-mastectomy procedures. This study compares outcomes of different ADMs that are commonly used in women undergoing IBR, this was short and long-term complications.

Methods: A systematic search of MEDLINE, Embase, CENTRAL, and CDSR databases was performed according to the PRISMA guidelines, focusing on women undergoing IBR with FlexHD, AlloDerm, Bovine, or Porcine ADMs.

View Article and Find Full Text PDF

Over the past few decades, microtubules have been targeted by various anticancer drugs, including paclitaxel and eribulin. Despite their promising effects, the development of drug resistance remains a challenge. We aimed to define a novel cell death mechanism that targets microtubules using eribulin and to assess its potential in overcoming eribulin resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!