Eicosanoids in Cancer: Prostaglandin E Receptor 4 in Cancer Therapeutics and Immunotherapy.

Front Pharmacol

University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Baltimore, MD, United States.

Published: May 2020

The cyclooxygenase-2 (COX-2) enzyme is frequently overexpressed in epithelial malignancies including those of the breast, prostate, lung, kidney, ovary, and liver and elevated expression is associated with worse outcomes. COX-2 catalyzes the metabolism of arachidonic acid to prostaglandins. The COX-2 product prostaglandin E (PGE) binds to four G-protein-coupled EP receptors designated EP1-EP4. EP4 is commonly upregulated in cancer and supports cell proliferation, migration, invasion, and metastasis through activation of multiple signaling pathways including ERK, cAMP/PKA, PI3K/AKT, and NF-κB. EP4 antagonists inhibit metastasis in preclinical models. Cancer stem cells, that underlie therapy resistance and disease relapse, are driven by the expression of EP4. Resistance to several chemotherapies is reversed in the presence of EP4 antagonists. In addition to tumor cell-autonomous roles of EP4, many EP4-positive host cells play a role in tumor behavior. Endothelial cell-EP4 supports tumor angiogenesis and lymphangiogenesis. Natural Killer (NK) cells are critical to the mechanism by which systemically administered EP4 antagonists inhibit metastasis. PGE acts on EP4 expressed on the NK cell to inhibit tumor target cell killing, cytokine production, and chemotactic activity. Myeloid-derived suppressor cells (MDSCs), that inhibit the development of cytotoxic T cells, are induced by PGE acting on myeloid-expressed EP2 and EP4 receptors. Inhibition of MDSC-EP4 leads to maturation of effector T cells and suppresses the induction of T regulatory cells. A number of EP4 antagonists have proven useful in dissecting these mechanisms. There is growing evidence that EP4 antagonism, particularly in combination with either chemotherapy, endocrine therapy, or immune-based therapies, should be investigated further as a promising novel approach to cancer therapy. Several EP4 antagonists have now progressed to early phase clinical trials and we eagerly await the results of those studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7273839PMC
http://dx.doi.org/10.3389/fphar.2020.00819DOI Listing

Publication Analysis

Top Keywords

ep4 antagonists
20
ep4
11
antagonists inhibit
8
inhibit metastasis
8
cells
7
antagonists
5
eicosanoids cancer
4
cancer prostaglandin
4
prostaglandin receptor
4
cancer
4

Similar Publications

Prostaglandins are naturally occurring local mediators that can participate in the modulation of the cardiovascular system through their interaction with Gs/Gi-coupled receptors in different tissues and cells, including platelets. Thrombin is one of the most important factors that regulates platelet reactivity and coagulation. Clinical trials have consistently shown that omega-3 fatty acid supplementation lowers the risk for cardiovascular mortality and morbidity.

View Article and Find Full Text PDF

Subtle Structural Modifications Spanning from EP4 Antagonism to EP2/EP4 Dual Antagonism: A Novel Class of Thienocyclic-Based Derivatives.

J Med Chem

January 2025

Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.

The development of dual prostaglandin E receptors 2/4 (EP2/EP4) antagonists represents an attractive strategy for cancer immunotherapy. Herein, a series of 4,7-dihydro-5-thieno[2,3-]pyran derivatives with potent EP2/EP4 dual antagonism were discovered by fine-tuned structural modifications. The biphenyl side chain was found to be the key pharmacophore for the transition from EP4 antagonism to EP2/EP4 dual antagonism.

View Article and Find Full Text PDF

The haemocyte highly-expressed E-type prostanoid receptor regulates TNF expression during immune response of oyster Crassostrea gigas.

Fish Shellfish Immunol

December 2024

Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.

Prostaglandin E2 imparts diverse physiological effects on multiple cells through its actions on four distinct E-type prostanoid (EP) receptor subtypes (EP1-EP4), among which the EP4 is one of subtypes known to mediate the immune response in mammalian monocytes and macrophages. However, the precise characteristics and functions of EP4 in mollusks remain unclear. In the present study, an EP4 homologue (designated as CgEP4) was identified from oyster Crassostrea gigas.

View Article and Find Full Text PDF

Purpose: Novel combinations are required to overcome resistance to immune checkpoint inhibitors (ICIs) in proficient mismatch repair (pMMR) or microsatellite stable (MSS) metastatic colorectal cancer (mCRC). We aimed to determine whether vorbipiprant, a prostaglandin EP4 receptor antagonist, can convert immune-resistant mCRC into a tumor responsive to anti-PD-1 inhibition.

Patients And Methods: This phase 1b/2a prospective, open-label, single-arm trial followed a 3 + 3 dose escalation and dose optimization design.

View Article and Find Full Text PDF

EP4: A prostanoid receptor that modulates insulin signalling in rat skeletal muscle cells.

Cell Signal

February 2025

Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Electronic address:

The EP4 (prostaglandin E2) receptor plays a crucial role in myogenesis and skeletal muscle regeneration, yet its involvement in regulating insulin-dependent metabolic pathways is not well characterised. Our research investigates the expression of EP4 in rat skeletal L6 myotubes and its impact on insulin signalling. We found that activation of EP4 by selective agonists disrupts insulin signalling and insulin-stimulated glucose uptake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!