Whether G protein-coupled receptors signal from endosomes to control important pathophysiological processes and are therapeutic targets is uncertain. We report that opioids from the inflamed colon activate δ-opioid receptors (DOPr) in endosomes of nociceptors. Biopsy samples of inflamed colonic mucosa from patients and mice with colitis released opioids that activated DOPr on nociceptors to cause a sustained decrease in excitability. DOPr agonists inhibited mechanically sensitive colonic nociceptors. DOPr endocytosis and endosomal signaling by protein kinase C (PKC) and extracellular signal-regulated kinase (ERK) pathways mediated the sustained inhibitory actions of endogenous opioids and DOPr agonists. DOPr agonists stimulated the recruitment of Gα and β-arrestin1/2 to endosomes. Analysis of compartmentalized signaling revealed a requirement of DOPr endocytosis for activation of PKC at the plasma membrane and in the cytosol and ERK in the nucleus. We explored a nanoparticle delivery strategy to evaluate whether endosomal DOPr might be a therapeutic target for pain. The DOPr agonist DADLE was coupled to a liposome shell for targeting DOPr-positive nociceptors and incorporated into a mesoporous silica core for release in the acidic and reducing endosomal environment. Nanoparticles activated DOPr at the plasma membrane, were preferentially endocytosed by DOPr-expressing cells, and were delivered to DOPr-positive early endosomes. Nanoparticles caused a long-lasting activation of DOPr in endosomes, which provided sustained inhibition of nociceptor excitability and relief from inflammatory pain. Conversely, nanoparticles containing a DOPr antagonist abolished the sustained inhibitory effects of DADLE. Thus, DOPr in endosomes is an endogenous mechanism and a therapeutic target for relief from chronic inflammatory pain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334524PMC
http://dx.doi.org/10.1073/pnas.2000500117DOI Listing

Publication Analysis

Top Keywords

dopr
13
therapeutic target
12
inflammatory pain
12
dopr endosomes
12
dopr agonists
12
endosomal signaling
8
endogenous mechanism
8
mechanism therapeutic
8
target relief
8
relief inflammatory
8

Similar Publications

Dynorphins (Dyn) represent the subset of endogenous opioid peptides with the highest binding affinity to kappa opioid receptors (KOPrs). Activation of the G-protein-coupled pathway of KOPrs has strong anticonvulsant effects. Dyn also bind to mu (MOPrs) and delta opioid receptors (DOPrs) with lower affinity and can activate the β-arrestin pathway.

View Article and Find Full Text PDF

While the evidence for the implication of opioid receptors (OPr) in ageing is growing, there is, to our knowledge, no study focusing directly on changes in vivo cutaneous OPr expression with increasing age. We thus investigated OPr expression in 30 healthy female Asian volunteers in Southern China whose ages range from the early 20s to the early 60s. Excisional biopsies were taken from the sun-exposed extensor area of the lower arm and the photo-protected area of the upper inner arm.

View Article and Find Full Text PDF

The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing a crucial role in skin differentiation, proliferation and migration, which are not only essential for wound healing but also contribute to cancer development. In this study, we propose a significant association between cutaneous opioid receptor (OPr) activity and circadian rhythmicity.

View Article and Find Full Text PDF

There is a major societal need for analgesics with less tolerance, dependence, and abuse liability. Preclinical rodent studies suggest that bifunctional ligands with both mu (MOPr) and delta (DOPr) opioid peptide receptor activity may produce analgesia with reduced tolerance and other side effects. This study explores the structure-activity relationships (SAR) of our previously reported MOPr/DOPr lead, benzylideneoxymorphone (BOM) with C7-methylene-substituted analogs.

View Article and Find Full Text PDF

Nerve terminals in the tumor microenvironment as targets for local infiltration analgesia.

Neurosci Res

November 2023

Amrita School of Nanosciences & Molecular Medicine, Amrita Institute of Medical Sciences & Research Center, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India. Electronic address:

Nerve terminals within the tumor microenvironment as potential pain-mitigating targets for local infiltration analgesia is relatively less explored. In this study, we examine the role of key analgesics administered as local infiltration analgesia in a model of cancer-induced bone pain (CIBP). CIBP was induced by administration of allogenic MRMT1 breast cancer cells in the proximal tibia of rats, and tumor mass characterized using radiogram, micro-CT, and histological analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!