Accumulating evidence indicates that intratumoral heterogeneity contributes to the development of resistance to anticancer therapeutics. Fibroblasts, which are components of the paraneoplastic stroma, play a crucial role in the wound-healing process. Activated fibroblasts accumulate in the wound and are involved in many aspects of the tissue remodeling cascade that initiates the repair process and prevents further tissue damage. The pathophysiological roles of cancer-associated fibroblasts (CAFs) in the heterogeneous tumor microenvironment have attracted increasing interest. CAFs play crucial roles in tumor progression and the response to chemotherapy. Several cytokines and chemokines are involved in the conversion of normal fibroblasts into CAFs, and some of these form a feedback loop between cancer cells and CAFs. In addition, the physical force between tumor cells and CAFs promotes cooperative invasion or co-migration of both types of cells. Pro-inflammatory cytokines, such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6), are secreted by both cancer cells and CAFs, and mediate the epigenetic modification of CAFs. This enhances the pro-tumorigenic function of CAFs mediated by promoting actomyosin contractility and extracellular matrix remodeling to form the tracks used for collective cancer cell migration. The concept of intra-tumoral CAF heterogeneity refers to the presence of inflammatory CAFs with low levels of α-smooth muscle actin (α-SMA) and high levels of IL-6 expression, which are in striking contrast to transforming growth factor-β (TGF-β)-dependent myofibroblastic CAFs with high α-SMA expression levels. CAF populations that suppress tumor growth and progression through stroma-specific Hedgehog (Hh) activation have been detected in different murine tumor models including those of the bladder, colon, and pancreas. A new therapeutic strategy targeting CAFs is the "stromal switch," in which tumor-promoting CAFs are changed into tumor-retarding CAFs with attenuated stromal stiffness. Several molecular mechanisms that can be exploited to design personalized anticancer therapies targeting CAFs remain to be elucidated. Strategies aimed at targeting the tumor stroma as well as tumor cells themselves have attracted academic attention for their application in precision medicine. This novel review discusses the role of the activation of EGFR, Wnt/β-catenin, Hippo, TGF-β, and JAK/STAT cascades in CAFs in relation to the chemoresistance and invasive/metastatic behavior of cancer cells. For instance, although activated EGFR signaling contributes to collective cell migration in cooperation with CAFs, an activated Hippo pathway is responsible for stromal stiffness resulting in the collapse of neoplastic blood vessels. Therefore, identifying the signaling pathways that are activated under specific conditions is crucial for precision medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7296768 | PMC |
http://dx.doi.org/10.1186/s13046-020-01611-0 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China.
Purpose: Since fibroblast activation protein (FAP), one predominant biomarker of cancer associated fibroblasts (CAFs), is highly expressed in the tumor stroma of various epidermal-derived cancers, targeting FAP for tumor diagnosis and treatment has shown substantial potentials in both preclinical and clinical studies. However, in preclinical settings, tumor-bearing mice exhibit relatively low absolute FAP expression levels, leading to challenges in acquiring high-quality PET images using radiolabeled FAP ligands (FAPIs) with low molar activity, because of which a saturation effect in imaging is prone to happen. Moreover, how exactly the molar dose of FAPI administered to a mouse influences the targeted PET imaging and radiotherapy remains unclear now.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Oncology, The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, China.
Background: Almonertinib is the initial third-generation EGFR-TKI in China, but its resistance mechanism is unknown. Cancer-associated fibroblasts (CAFs) are essential matrix components in the tumor microenvironment, but their impact on almonertinib resistance is unknown. This study aimed to explore the correlation between CAFs and almonertinib resistance in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFChembiochem
January 2025
Purdue University College of Engineering, Weldon School of Biomedical Engineering, 723 W. Michigan St., SL 220K, IN 46202, Indianapolis, UNITED STATES OF AMERICA.
Pancreatic ductal adenocarcinoma (PDAC) is marked by significant desmoplastic reactions, or the accumulation of excessive extracellular matrices. PDAC stroma has abnormally high stiffness, which alters cancer cell behaviors and creates a barrier for effective drug delivery. Unfortunately, clinical trials using a combination of chemotherapy and matrix-degrading enzyme have led to disappointing results, as the degradation of stromal tissue likely accelerated the dissemination of cancer cells.
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.
View Article and Find Full Text PDFAnn Thorac Surg Short Rep
December 2024
Department of Pediatric Cardiothoracic Surgery, Children's Hospital of New Orleans, New Orleans, Louisiana.
An infant with DiGeorge syndrome, multiple comorbidities, and truncus arteriosus type II underwent repair complicated by heart block necessitating placement of a dual-chamber bipolar pacing system with right ventricular leads and subsequent resynchronization with placement of left ventricular apical pacing leads. Resynchronization therapy improved QRS duration from 180 ms to 100 ms and ejection fraction from 25% to 54% over the course of 4 weeks with gradual return to normal function and eventual discharge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!