AI Article Synopsis

  • Researchers are exploring how to improve plasmon-enabled light-harvesting technologies and need to understand the underlying principles and limitations better.
  • They used advanced X-ray photoemission spectroscopy to study electron transfer in a system of gold nanoparticles on a TiO film, revealing important charge distribution data.
  • The results show that about two electrons are injected per nanoparticle per absorbed photon, with a fast recombination of electrons occurring within approximately 60 ± 10 picoseconds, which aids in understanding how to enhance photon-to-charge conversion efficiency.

Article Abstract

Progress in the development of plasmon-enabled light-harvesting technologies requires a better understanding of their fundamental operating principles and current limitations. Here, we employ picosecond time-resolved X-ray photoemission spectroscopy to investigate photoinduced electron transfer in a plasmonic model system composed of 20 nm sized gold nanoparticles (NPs) attached to a nanoporous film of TiO. The measurement provides direct, quantitative access to transient local charge distributions from the perspectives of the electron donor (AuNP) and the electron acceptor (TiO). On average, approximately two electrons are injected per NP, corresponding to an electron injection yield per absorbed photon of 0.1%. Back electron transfer from the perspective of the electron donor is dominated by a fast recombination channel proceeding on a time scale of 60 ± 10 ps and a minor contribution that is completed after ∼1 ns. The findings provide a detailed picture of photoinduced charge carrier generation in this NP-semiconductor junction, with important implications for understanding achievable overall photon-to-charge conversion efficiencies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c00825DOI Listing

Publication Analysis

Top Keywords

photoinduced charge
8
charge carrier
8
electron injection
8
picosecond time-resolved
8
time-resolved x-ray
8
electron transfer
8
electron donor
8
electron
7
carrier dynamics
4
dynamics electron
4

Similar Publications

Herein, the construction of potential donor-acceptor (D-A) structures was guided using density-functional theory (DFT) calculations. The photocatalytic nitrogen fixation performance of TAPT-CHF was then experimentally determined to be 327.58 μmol g h, which was attributed to its efficient photo-induced charge separation and migration ability.

View Article and Find Full Text PDF

Low-power gas sensors that can be used in IoT (Internet of Things) systems, consumer devices, and point-of-care devices will enable new applications in environmental monitoring and health protection. We fabricated a monolithic chemiresistive gas sensor by integrating a micro-lightplate with a 2D sensing material composed of single-layer graphene and monolayer-thick TiO. Applying ultraviolet (380 nm) light with quantum energy above the TiO bandgap effectively enhanced the sensor responses.

View Article and Find Full Text PDF

A polyacrylamide gel method has been used to synthesize a variety of polyvalent-transition-metal-doped Ni position of high entropy spinel oxides (NiZnMgCuCo)AlO-800 °C (A) on the basis of NiAlO, and the catalytic activity of A is studied under the synergistic action of peroxymonosulfate (PMS) activation and simulated sunlight. The A containing polyvalent transition metals (Ni, Cu, and Co) can effectively activate PMS and efficiently degrade levofloxacin (LEV) and tetracycline hydrochloride (TCH) under simulated sunlight irradiation. After 90 min of light exposure, the degradation percentages of LEV (50 mg L) and TCH (100 mg L) degrade by the A/PMS/vis system reach 87.

View Article and Find Full Text PDF

Photo-induced multiple charge transfer resonance of Ce-MOF for SERS detection of nucleic acid.

Anal Chim Acta

February 2025

Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, PR China. Electronic address:

Background: Sensitive and accurate detection of important cancer markers MicroRNAs (miRNAs) is critical to prevent and treat disease. Among many detection techniques, surface-enhanced Raman scattering(SERS) has attracted much attention due to its advantages such as narrow spectral peak, low interference and non-destructive detection. Interestingly, non-noble metal SERS substrates show good prospects due to their outstanding spectral reproducibility and biocompatibility.

View Article and Find Full Text PDF

Compared with the energetically favorable 5- or 6-membered fluoro-functionalized heterocycles, the construction of medium-sized fluoro-heterocycles is relatively under-researched because of their inherently unfavorable enthalpic and entropic nature. Based on rational design and DFT calculations, a novel photocatalytic difluoromethyl radical-initiated intramolecular 7--trig cyclization was realized, thus affording a sustainable route for the synthesis of challenging fluoro-functionalized medium-sized -heterocycles. Depending on atomic dipole moment corrected Hirshfeld population (ADCH) charge calculations, the chemoselective 6--trig radical cyclizations were further replenished.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!