In this study, different compatibilizing agents were used to analyze their influence on immiscible blends of polylactide (PLA) and biobased high-density polyethylene (bioPE) 80/20 (wt/wt). The compatibilizing agents used were polyethylene vinyl acetate (EVA) with a content of 33% of vinyl acetate, polyvinyl alcohol (PVA), and dicumyl peroxide (DPC). The influence of each compatibilizing agent on the mechanical, thermal, and microstructural properties of the PLA-bioPE blend was studied using different microscopic techniques (i.e., field emission electron microscopy (FESEM), transmission electron microscopy (TEM), and atomic force microscopy with PeakForce quantitative nanomechanical mapping (AFM-QNM)). Compatibilized PLA-bioPE blends showed an improvement in the ductile properties, with EVA being the compatibilizer that provided the highest elongation at break and the highest impact-absorbed energy (Charpy test). In addition, it was observed by means of the different microscopic techniques that the typical droplet-like structure is maintained, but the use of compatibilizers decreases the dimensions of the dispersed droplets, leading to improved interfacial adhesion, being more pronounced in the case of the EVA compatibilizer. Furthermore, the incorporation of the compatibilizers caused a very marked decrease in the crystallinity of the immiscible PLA-bioPE blend.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7361870PMC
http://dx.doi.org/10.3390/polym12061344DOI Listing

Publication Analysis

Top Keywords

compatibilizing agents
8
vinyl acetate
8
pla-biope blend
8
microscopic techniques
8
electron microscopy
8
eva compatibilizer
8
compatibilization characterization
4
characterization polylactide
4
polylactide biopolyethylene
4
biopolyethylene binary
4

Similar Publications

Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.

View Article and Find Full Text PDF

Bovine hair waste was chemically modified to obtain a coupling agent (CA) for the compatibilization of thermoplastic starch (TPS)-unmodified bovine hair waste (UH) composites. The composites processed with CA presented improved tensile strength (3.5 MPa) compared to TPS-UH composites without CA (1.

View Article and Find Full Text PDF

The study examined the use of cellulose nanocrystals (CNCs) in poly(ethylene terephthalate) (PET)/castor oil (CO) electrospun membranes, focusing on how CNCs influenced membrane properties for aerosol filtration applications. PET membranes were fabricated using 5 wt% and 10 wt% of CNCs and 2.5 wt% CO to assess its effectiveness as a compatibilizing agent, under a solution flow rate of 25.

View Article and Find Full Text PDF

This paper presents the obtaining and characterization of blends based on high-density polyethylene (HDPE) and plasticized starch. In addition to plasticized starch (28.8% /), the compositions made also contained other ingredients, such as polyethylene-graft-maleic anhydride as a compatibilizer, ethylene propylene terpolymer elastomer, cross-linking agents, and nanoclay.

View Article and Find Full Text PDF

Integrated Ziegler-Natta/Brookhart-Ni Catalysts for the Synthesis of Sutured Polar High-Impact Polypropylenes.

Angew Chem Int Ed Engl

November 2024

Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

The direct synthesis of polar high-impact polypropylenes using industrially-preferred heterogeneous catalysts is challenging due to the poisoning of polar functional groups towards metal center and the high stereo-selectivity requirement. In this work, dual-site catalysts combining Ziegler-Natta and Brookhart-Ni catalysts were used to produce polar polyolefin ionomers, followed by polar high-impact polypropylenes containing isotactic polypropylene and branched polyethylene as toughening agents. Three combination modes between these catalysts were investigated, including mixed, core-shell, and integrated types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!