The global demand for petroleum contributes to a significant increase in soil pollution with petroleum-based products that pose a severe risk not only to humans but also to plants and the soil microbiome. The increasing pollution of the natural environment urges the search for effective remediation methods. Considering the above, the objective of this study was to determine the usability of for the degradation of hydrocarbons contained in diesel oil (DO), as well as the effects of both the plant tested and DO on the biochemical functionality and changes in the soil microbiome. The experiment was conducted in a greenhouse with non-polluted soil as well as soil polluted with DO and phytoremediated with . Soil pollution with DO increased the numbers of microorganisms and soil enzymes and decreased the value of the ecophysiological diversity index of microorganisms. Besides, it contributed to changes in the bacterial structure at all taxonomic levels. DO was found to increase the abundance of and to decrease that of , , , and . In the non-polluted soil, the core microbiome was represented by and , whereas in the DO-polluted soil, it was represented by and . In soil sown with , gasoline fraction (C-C) degradation was higher by 17%; mineral oil (C-C), by 9%; benzene, by 31%; anthracene, by 12%; chrysene, by 38%; benzo(a)anthracene, by 19%; benzo(a)pyrene, by 17%; benzo(b)fluoranthene, by 15%; and benzo(k)fluoranthene, by 18% than in non-sowed soil. To conclude, proved useful in degrading DO hydrocarbons and, therefore, may be recommended for the phytoremediation of soils polluted with petroleum-based products. It has been shown that the microbiological, biochemical and chemical tests are fast and sensitive in the diagnosis of soil contamination with petroleum products, and a combination of all these tests gives a reliable assessment of the state of soils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349710PMC
http://dx.doi.org/10.3390/s20123362DOI Listing

Publication Analysis

Top Keywords

soil
13
diesel oil
8
soil pollution
8
petroleum-based products
8
soil microbiome
8
non-polluted soil
8
role diesel
4
oil formation
4
microbiome
4
formation microbiome
4

Similar Publications

Multifaceted Links Between Microbial Carbon Use Efficiency and Soil Organic Carbon Sequestration.

Glob Chang Biol

January 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, China.

Conceptual framework to unlock the mechanisms for microbial carbon use efficiency and SOC formation.

View Article and Find Full Text PDF

Impeding linear calibration models from accurately predicting target sample analyte amounts are the target sample-wise deviations in measurement profiles (e.g., spectra) relative to calibration samples.

View Article and Find Full Text PDF

Soil microbes are among the most abundant and diverse organisms on Earth but remain poorly characterized. New technologies have made possible to sequence the DNA of uncultivated microorganisms in soil and other complex ecosystems. Genome assembly is crucial for understanding their functional potential.

View Article and Find Full Text PDF

Many cellular functions depend on the physical properties of the cell's environment. Many bacteria have different types of surface appendages to enable adhesion and motion on various surfaces. is a social soil bacterium with two distinctly regulated modes of surface motility, termed the social motility mode, driven by type IV pili, and the adventurous motility mode, based on focal adhesion complexes.

View Article and Find Full Text PDF

Seed germination is a crucial stage in plant development, intricately regulated by various environmental stimuli. Understanding these interactions is essential for optimizing planting and seedling management but remains challenging due to the trade-off effects of environmental factors on the germination process. We proposed a new conceptual model by viewing seed germination as a dynamic process in a physiological dimension, with the influence of environmental factors and seed heterogeneity characterized by a germination speed and a dispersion coefficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!