The extracellular matrix (ECM) plays a key role during cell migration, proliferation, and differentiation by providing adhesion sites and serving as a physical scaffold. Elucidating the interaction between the cell and ECM can reveal the underlying mechanisms of cellular behavior that are currently unclear. Analysis of the deformation of the ECM due to cell-matrix interactions requires microscopic, three-dimensional (3-D) imaging methods, such as confocal microscopy and second-harmonic generation microscopy, which are currently limited by phototoxicity and bleaching as a result of the point-scanning approach. In this study, we suggest the use of optical coherence microscopy (OCM) as a live-cell, volumetric, fast imaging tool for analyzing the deformation of fibrous ECM. We optimized such OCM parameters as the sampling rate to obtain images of the best quality that meet the requirements for robust digital volume correlation (DVC) analysis. Visualization and analysis of the mechanical interaction between collagen ECM and human umbilical vein endothelial cells (HUVECs) show that cellular adhesion during protrusion can be analyzed and quantified. The advantages of OCM, such as fine isotropic spatial resolution, fast time resolution, and low phototoxicity, make it the ideal optic tool for 3-D traction force microscopy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7345655 | PMC |
http://dx.doi.org/10.3390/ma13122693 | DOI Listing |
Vet Q
December 2025
Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
This review examines the role of the canine blood-brain barrier (BBB) in health and disease, focusing on the impact of the multidrug resistance (MDR) transporter P-glycoprotein (P-gp) encoded by the gene. The BBB is critical in maintaining central nervous system homeostasis and brain protection against xenobiotics and environmental drugs that may be circulating in the blood stream. We revise key anatomical, histological and functional aspects of the canine BBB and examine the role of the gene mutation in specific dog breeds that exhibit reduced P-gp activity and disrupted drug brain pharmacokinetics.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Radiotherapy, Suzhou Ninth People's Hospital, Suzhou, 215200, China.
Background: Liquid-Liquid Phase Separation (LLPS) is a process involved in the formation of established organelles and various condensates that lack membranes; however, the relationship between LLPS and Ulcerative Colitis (UC) remains unclear.
Aims: This study aimed to comprehensively clarify the correlation between ulcerative colitis (UC) and liquid-liquid phase separation (LLPS).
Objectives: In this study, bioinformatics analyses and public databases were applied to screen and validate key genes associated with LLPS in UC.
Ann Thorac Surg Short Rep
September 2023
Division of Cardiac Surgery, Department of Surgery, University of Chicago, Chicago, Illinois.
Background: Patient-specific, 3-dimensional printed, tissue engineered vascular grafts (3DTEVGs) are manufactured to optimize hemodynamic performance and to accommodate growth. We evaluate growth outcomes of 3DTEVGs compared with standard grafts for pulmonary artery reconstruction in porcine models.
Methods: Magnetic resonance imaging (MRI) with 4-dimensional flow data was acquired in porcine models (n = 8).
iScience
January 2025
Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan.
Ischemia and pathological angiogenesis in retinal vascular diseases cause serious vision-related problems. However, the transcriptional regulators of vascular repair remain unidentified. Thus, the factors and mechanisms involved in angiogenesis must be elucidated to develop approaches for restoring normal blood vessels.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Plastic Surgery, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
Chronic hard-to-heal wounds pose a significant threat to patients' health and quality of life, and their clinical management remains a challenge. Adipose-derived stem cell exosomes (ADSC-exos) have shown promising results in promoting diabetic wound healing. However, effectively enhancing the retention of exosomes in wounds for treatment remains a key issue that needs to be addressed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!