Fish industry by-products constitute an interesting platform for the extraction and recovery of valuable compounds in a circular economy approach. Among them, mussel shells could provide a calcium-rich source for the synthesis of hydroxyapatite (HA) bioceramics. In this work, HA nanoparticles have been successfully synthesized starting from mussel shells () with a two steps process based on thermal treatment to convert CaCO in CaO and subsequent wet precipitation with a phosphorus source. Several parameters were studied, such as the temperature and gaseous atmosphere of the thermal treatment as well as the use of two different phosphorus-containing reagents in the wet precipitation. Data have revealed that the characteristics of the powders can be tailored, changing the conditions of the process. In particular, the use of (NH)HPO as the phosphorus source led to HA nanoparticles with a high crystallinity degree, while smaller nanoparticles with a higher surface area were obtained when HPO was employed. Further, a selected HA sample was synthesized at the pilot scale; then, it was employed to fabricate porous 3D scaffolds using the direct foaming method. A highly porous scaffold with open and interconnected porosity associated with good mechanical properties (i.e., porosity in the range 87-89%, pore size in the range 50-300 μm, and a compressive strength σ = 0.51 ± 0.14 MPa) suitable for bone replacement was achieved. These results suggest that mussel shell by-products are effectively usable for the development of compounds of high added value in the biomedical field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7344406PMC
http://dx.doi.org/10.3390/md18060309DOI Listing

Publication Analysis

Top Keywords

circular economy
8
mussel shells
8
thermal treatment
8
wet precipitation
8
phosphorus source
8
mussel
4
mussel shell-derived
4
shell-derived macroporous
4
macroporous scaffold
4
scaffold characterization
4

Similar Publications

Azo dyes constitute 60-70% of commercially used dyes and are complex, carcinogenic, and mutagenic pollutants that negatively impact soil composition, water bodies, flora, and fauna. Conventional azo dye degradation techniques have drawbacks such as high production and maintenance costs, use of hazardous chemicals, membrane clogging, and sludge generation. Constructed Wetland-Microbial Fuel Cells (CW-MFCs) offer a promising sustainable approach for the bio-electrodegradation of azo dyes from textile wastewater.

View Article and Find Full Text PDF

A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods.

View Article and Find Full Text PDF

Isolation, characterization, and genome sequencing analysis of a novel phage HBW-1 of Salmonella.

Microb Pathog

January 2025

Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.

View Article and Find Full Text PDF

Recyclability and recovery of carbon from waste printed circuit boards within a circular economy perspective: A review.

J Environ Manage

January 2025

Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, H3G 1M8, Canada. Electronic address:

Waste printed circuit boards (WPCBs) are a significant component of electronic waste (e-waste) and are among the fastest-generating waste flows. The potentially negative impacts caused by e-waste on the environment and human health pose an increasingly apparent threat to people's everyday lives and well-being. The nonmetallic fraction (predominantly carbon) of WPCBs is characterized by heavy weight, low resource value, and complex composition, and these characteristics significantly restrict the recycling of the WPCBs to achieve a circular economy.

View Article and Find Full Text PDF

The shelf-life of grapes is reduced due to infection by various pathogens and mechanical damage, which consequently limits their availability on the market and results huge economic losses. Active packaging films are expected to overcome this problem. In this study, packaging films (CMC-Gly-PMA) were developed using wheat straw-based carboxymethyl cellulose (2 %), glycerol (30 % w/w of CMC) and polymalate (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!