Chitosan (CS) has gained particular attention in biomedical applications due to its biocompatibility, antibacterial feature, and biodegradability. Hence, many studies have focused on the manufacturing of CS films, scaffolds, particulate, and inks via different production methods. Nowadays, with the possibility of the precise adjustment of porosity size and shape, fiber size, suitable interconnectivity of pores, and creation of patient-specific constructs, 3D printing has overcome the limitations of many traditional manufacturing methods. Therefore, the fabrication of 3D printed CS scaffolds can lead to promising advances in tissue engineering and regenerative medicine. A review of additive manufacturing types, CS-based printed constructs, their usages as biomaterials, advantages, and drawbacks can open doors to optimize CS-based constructions for biomedical applications. The latest technological issues and upcoming capabilities of 3D printing with CS-based biopolymers for different applications are also discussed. This review article will act as a roadmap aiming to investigate chitosan as a new feedstock concerning various 3D printing approaches which may be employed in biomedical fields. In fact, the combination of 3D printing and CS-based biopolymers is extremely appealing particularly with regard to certain clinical purposes. Complications of 3D printing coupled with the challenges associated with materials should be recognized to help make this method feasible for wider clinical requirements. This strategy is currently gaining substantial attention in terms of several industrial biomedical products. In this review, the key 3D printing approaches along with revealing historical background are initially presented, and ultimately, the applications of different 3D printing techniques for fabricating chitosan constructs will be discussed. The recognition of essential complications and technical problems related to numerous 3D printing techniques and CS-based biopolymer choices according to clinical requirements is crucial. A comprehensive investigation will be required to encounter those challenges and to completely understand the possibilities of 3D printing in the foreseeable future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7321644 | PMC |
http://dx.doi.org/10.3390/ma13112663 | DOI Listing |
iScience
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.
View Article and Find Full Text PDFSimulators allow junior otolaryngology residents to practice the delicate procedure of pressure equalization tube (PET) insertion. However, most simulators lack the ability to mimic the differing anatomic complexities between patients, such as variable external auditory canal (EAC) size. We developed a novel low-cost, medium-fidelity 3-dimensional-printed PET simulator with different EAC sizes to better reflect procedure complexity.
View Article and Find Full Text PDFObjective: This study was conducted to investigate the social media practices and attitudes towards e-professionalism among undergraduate medical students in a medical college of Pakistan.
Methods: This cross-sectional study was conducted on 220 undergraduate medical students from 2 to final-year MBBS, at CMH Lahore Medical College from March to August 2022. After ethical approval, a printed questionnaire was distributed among students, selected by stratified random sampling technique.
Extreme Mech Lett
March 2025
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
Cutting soft materials on the microscale has emerging applications in single-cell studies, tissue microdissection for organoid culture, drug screens, and other analyses. However, the cutting process is complex and remains incompletely understood. Furthermore, precise control over blade geometries, such as the blade tip radius, has been difficult to achieve.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Graduate Program in Food Science and Technology, State University of Ponta Grossa, Avenida Carlos Cavalcanti 4748, Ponta Grossa, Paraná 84030-900 Brazil.
Sweet potato ( (L.) Lam.) is a tuber root crop with high economical potential and China is responsible for harvesting roughly 70% of the world production.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!