Fusions of the Runt-related transcription factor 1 (RUNX1) with different partner genes have been associated with various hematological disorders. Interestingly, the C-terminally truncated form of RUNX1 and RUNX1 fusion proteins are similarly considered important contributors to leukemogenesis. Here, we describe a 59-year-old male patient who was initially diagnosed with acute myeloid leukemia, inv(16)(p13;q22)/CBFB-MYH11 (FAB classification M4Eo). He achieved complete remission and negative CBFB-MYH11 status with daunorubicin/cytarabine combination chemotherapy but relapsed 3 years later. Cytogenetic analysis of relapsed leukemia cells revealed CBFB-MYH11 negativity and complex chromosomal abnormalities without inv(16)(p13;q22). RNA-seq identified the glutamate receptor, ionotropic, kinase 2 (GRIK2) gene on 6q16 as a novel fusion partner for RUNX1 in this case. Specifically, the fusion of RUNX1 to the GRIK2 antisense strand (RUNX1-GRIK2as) generated multiple missplicing transcripts. Because extremely low levels of wild-type GRIK2 were detected in leukemia cells, RUNX1-GRIK2as was thought to drive the pathogenesis associated with the RUNX1-GRIK2 fusion. The truncated RUNX1 generated from RUNX1-GRIK2as induced the expression of the granulocyte colony-stimulating factor (G-CSF) receptor on 32D myeloid leukemia cells and enhanced proliferation in response to G-CSF. In summary, the RUNX1-GRIK2as fusion emphasizes the importance of aberrantly truncated RUNX1 in leukemogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000508012 | DOI Listing |
Open Biol
November 2024
The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, People's Republic of China.
The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish mutants to investigate the function of Cebpa in the HSPC compartment.
View Article and Find Full Text PDFBlood
October 2024
Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia.
Leukemia
January 2024
Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
T(8;21)(q22;q22), which generates the AML1-ETO fusion oncoprotein, is a common chromosomal abnormality in acute myeloid leukemia (AML) patients. Despite having favorable prognosis, 40% of patients will relapse, highlighting the need for innovative models and application of the newest technologies to study t(8;21) leukemogenesis. Currently, available AML1-ETO mouse models have limited utility for studying the pre-leukemic stage because AML1-ETO produces mild hematopoietic phenotypes and no leukemic transformation.
View Article and Find Full Text PDFImmunity
August 2022
Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA. Electronic address:
FoxP3 is an essential transcription factor (TF) for immunologic homeostasis, but how it utilizes the common forkhead DNA-binding domain (DBD) to perform its unique function remains poorly understood. We here demonstrated that unlike other known forkhead TFs, FoxP3 formed a head-to-head dimer using a unique linker (Runx1-binding region [RBR]) preceding the forkhead domain. Head-to-head dimerization conferred distinct DNA-binding specificity and created a docking site for the cofactor Runx1.
View Article and Find Full Text PDFCurr Oncol
February 2022
Division of Hematology, University Hospital Basel, CH-4031 Basel, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!