Salidroside (Sal), a natural phenolic compound isolated from Rhodiola sachalinensis, has been utilized as anti-inflammatory and antioxidant for centuries, however, its effects against liver injury and the underlying mechanisms are unclear. This study was designed to evaluate the protective effects and underlying mechanisms of Sal on carbon tetrachloride (CCl4)-induced acute liver injury (ALI) in mice. C57BL/6 mice were pretreated with Sal before CCl4 injection, the serum and liver tissue were collected to evaluate liver damage and molecular indices. The results showed that Sal pretreatment dose-dependently attenuated CCl4-induced acute liver injury, as indicated by lowering the activities of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and inhibiting hepatic pathological damage and apoptosis. In addition, Sal alleviated CCl4-primed oxidative stress and inflammatory response by restoring hepatic glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and inhibiting cytokines. Finally, Sal also down-regulated the expression of cytochrome P4502E1 (CYP2E1), and Nod-like receptor protein 3 (NLRP3) inflammasome activation in the liver of mice by CCl4. Our study demonstrates that Sal exerts its hepatoprotective effects on ALI through its antioxidant and anti-inflammatory effects, which might be mediated by down-regulating CYP2E1 expression and inhibiting NLRP3 inflammasome activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.intimp.2020.106662 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!