A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rubik's Cube+: A self-supervised feature learning framework for 3D medical image analysis. | LitMetric

Due to the development of deep learning, an increasing number of research works have been proposed to establish automated analysis systems for 3D volumetric medical data to improve the quality of patient care. However, it is challenging to obtain a large number of annotated 3D medical data needed to train a neural network well, as such manual annotation by physicians is time consuming and laborious. Self-supervised learning is one of the potential solutions to mitigate the strong requirement of data annotation by deeply exploiting raw data information. In this paper, we propose a novel self-supervised learning framework for volumetric medical data. Specifically, we propose a pretext task, i.e., Rubik's cube+, to pre-train 3D neural networks. The pretext task involves three operations, namely cube ordering, cube rotating and cube masking, forcing networks to learn translation and rotation invariant features from the original 3D medical data, and tolerate the noise of the data at the same time. Compared to the strategy of training from scratch, fine-tuning from the Rubik's cube+ pre-trained weights can remarkablely boost the accuracy of 3D neural networks on various tasks, such as cerebral hemorrhage classification and brain tumor segmentation, without the use of extra data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.media.2020.101746DOI Listing

Publication Analysis

Top Keywords

medical data
16
rubik's cube+
12
learning framework
8
volumetric medical
8
data
8
self-supervised learning
8
pretext task
8
neural networks
8
medical
5
cube+ self-supervised
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!