Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the development of deep learning, an increasing number of research works have been proposed to establish automated analysis systems for 3D volumetric medical data to improve the quality of patient care. However, it is challenging to obtain a large number of annotated 3D medical data needed to train a neural network well, as such manual annotation by physicians is time consuming and laborious. Self-supervised learning is one of the potential solutions to mitigate the strong requirement of data annotation by deeply exploiting raw data information. In this paper, we propose a novel self-supervised learning framework for volumetric medical data. Specifically, we propose a pretext task, i.e., Rubik's cube+, to pre-train 3D neural networks. The pretext task involves three operations, namely cube ordering, cube rotating and cube masking, forcing networks to learn translation and rotation invariant features from the original 3D medical data, and tolerate the noise of the data at the same time. Compared to the strategy of training from scratch, fine-tuning from the Rubik's cube+ pre-trained weights can remarkablely boost the accuracy of 3D neural networks on various tasks, such as cerebral hemorrhage classification and brain tumor segmentation, without the use of extra data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.media.2020.101746 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!