X-ray photoemission electron microscopy, one of the most successful imaging tools at synchrotrons, is known to have limitations related to the application of external fields and to the short electron mean free path. In order to overcome such issues, we adapt an existing XPEEM instrument to simultaneously perform coherent x-ray scattering measurements in reflectivity mode, thus adding a complementary method to XPEEM. Photon-in photon-out x-ray scattering provides the sensitivity to buried interfaces as well as the possibility to work under external fields, which is challenging when using charged particles for imaging. XPEEM, in turn, greatly alleviates the difficulties associated with the reconstruction methods used in coherent diffraction imaging. The combination of the two methods is demonstrated for an artifical spin-ice lattice showing both chemical and magnetic contrast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultramic.2020.113035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!