Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Defect structure is one of the crucial factors for enhancing the catalytic activities of photocatalysts. However, rational design and construction of defect structures in catalysts to meet the aim of enhancing photocatalytic performance in a simple and cost-effective way is still a challenge. In this contribution, we report a strategy to construct defect structures in graphitic carbon nitride (g-CN) by simple copolymerizing of urea with polyethyleneimine (PEI). Among the prepared catalysts, u-0.05PEI presents the best photocatalytic activity for CO reduction, with CO and CH yields of 32.86 and 1.68 μmol g in 4 h, which is about 3.2 and 2.5 times higher than that of g-CN, respectively. Characterization results show that both C and N defects are formed in the newly prepared catalysts. The C defects on the surface of u-xPEI result in the formation of more amino groups which are beneficial for CO adsorption. Meanwhile, the N defects inside the samples lead to the generation of midgap states between the valance band and conduction band of u-xPEI. The midgap states greatly enlarge the light absorption extent, and enable the use of light with energy lower than the intrinsic absorption of g-CN in the photoreduction of CO. As confirmed by DRS, EPR, PL analysis, the excellent catalytic activity of u-0.05PEI is mainly attributed to the remarkably improved light utilization efficiency and fast charge transfer. Moreover, the reaction is performed in water without any additive or organic solvent, which makes it environmentally friendly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2020.06.035 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!