AI Article Synopsis

  • Patients with hemolytic anemias are at increased risk for developing blood clots in their lungs, but the exact cause of this link is unclear.
  • A study using mice demonstrated that acute hemolysis causes the formation of clots rich in platelets in small pulmonary arteries, which can temporarily block blood flow.
  • The research indicates that the release of ADP from damaged red blood cells is crucial for triggering platelet activation and subsequent clot formation, while thrombin does not significantly contribute to this process.

Article Abstract

Patients with hereditary or acquired hemolytic anemias have a high risk of developing in situ thrombosis of the pulmonary vasculature. While pulmonary thrombosis is a major morbidity associated with hemolytic disorders, the etiological mechanism underlying hemolysis-induced pulmonary thrombosis remains largely unknown. Here, we use intravital lung microscopy in mice to assess the pathogenesis of pulmonary thrombosis following deionized water-induced acute intravascular hemolysis. Acute hemolysis triggered the development of αIIbβ3-dependent platelet-rich thrombi in precapillary pulmonary arterioles, which led to the transient impairment of pulmonary blood flow. The hemolysis-induced pulmonary thrombosis was phenocopied with intravascular ADP- but not thrombin-triggered pulmonary thrombosis. Consistent with a mechanism involving ADP release from hemolyzing erythrocytes, the inhibition of platelet P2Y12 purinergic receptor signaling attenuated pulmonary thrombosis and rescued blood flow in the pulmonary arterioles of mice following intravascular hemolysis. These findings are the first in vivo studies to our knowledge to suggest that acute intravascular hemolysis promotes ADP-dependent platelet activation, leading to thrombosis in the precapillary pulmonary arterioles, and that thrombin generation most likely does not play a significant role in the pathogenesis of acute hemolysis-triggered pulmonary thrombosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7453902PMC
http://dx.doi.org/10.1172/jci.insight.139437DOI Listing

Publication Analysis

Top Keywords

pulmonary thrombosis
28
intravascular hemolysis
16
pulmonary arterioles
16
pulmonary
13
precapillary pulmonary
12
thrombosis
9
platelet-rich thrombi
8
thrombi precapillary
8
hemolysis-induced pulmonary
8
acute intravascular
8

Similar Publications

Venous thromboembolism (VTE), encompassing deep vein thrombosis and pulmonary embolism, is a significant burden on health and economic systems worldwide. Improved VTE management calls for the integration of biomarkers into diagnostic algorithms and scoring systems for risk assessment, possible complications, and mortality. This literature review discusses novel biomarkers with potential diagnostic and prognostic value in personalized VTE management.

View Article and Find Full Text PDF

Recent Advances and Future Directions in Extracorporeal Carbon Dioxide Removal.

J Clin Med

December 2024

Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, London SE1 9RT, UK.

Extracorporeal carbon dioxide removal (ECCOR) is an emerging technique designed to reduce carbon dioxide (CO) levels in venous blood while enabling lung-protective ventilation or alleviating the work of breathing. Unlike high-flow extracorporeal membrane oxygenation (ECMO), ECCOR operates at lower blood flows (0.4-1.

View Article and Find Full Text PDF

Expert-Based Narrative Review on Compression UltraSonography (CUS) for Diagnosis and Follow-Up of Deep Venous Thrombosis (DVT).

Diagnostics (Basel)

January 2025

Research Center on Thromboembolic Diseases and Antithrombotic Treatment, Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy.

Deep venous thrombosis (DVT) is a pathological condition that develops when a thrombus forms within the deep venous system. Typically, it involves the lower limbs and, less frequently, the upper extremities or other unusual districts such as cerebral or splanchnic veins. While leg DVT itself is rarely fatal and occasionally can lead to limb-threatening implications, its most fearsome complication, namely pulmonary embolism, is potentially fatal and significantly contributes to increased healthcare costs and impaired quality of life in affected patients and caregivers.

View Article and Find Full Text PDF

Objective: We report a case of pregnancy following lung transplantation (LT) for idiopathic pulmonary arterial hypertension (IPAH) in Japan.

Case Report: A female developed IPAH at 14 years of age and underwent a successful bilateral living-donor lobar LT from her parents at 19 years of age (gravida 2, para 0). At the age of 40 years, the patient became pregnant via artificial insemination.

View Article and Find Full Text PDF

Background: Left ventricular unloading is needed in patients on extracorporeal life support (ECLS) with severely impaired left ventricular contractility to avoid stasis and pulmonary congestion, and to promote LV recovery. The presence of thrombi in the LV precludes the use of conventional active unloading methods such as transaortic microaxial pumps or apical LV vents. We describe placement of a vent cannula via the left atrial appendage (LAA) as a useful bailout option.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!