We recently proposed domain separated density functional theory (DS-DFT), a framework that allows for the combination of different levels of theory for the computation of the electronic structure of molecules. This work discusses the application of DS-DFT to the computation of transition-state energy barriers and optical absorption spectra. We considered several hydrogen abstraction reactions and optical spectra of molecule/metal cluster systems, including the absorption of individual species such as carbon monoxide, methane, and molecular hydrogen to a Li cluster. We present and discuss two domain-separated methods: (i), the screened-density approximation (SDA) and (ii) linearly weighted exchange (LWE). We find that SDA, which is applied as a hybridization based on atomic domains, could be useful to computing energy barriers, whereas LWE is suited for the analysis of electronic properties such as ground-state gaps, excitation energies, and oscillator strengths.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpca.0c03596 | DOI Listing |
J Am Chem Soc
January 2025
School of Chemistry, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China.
Potassium (K)-based batteries hold great promise for cryogenic applications owing to the small Stokes radius and weak Lewis acidity of K. Nevertheless, energy-dense (>200 W h kg) K batteries under subzero conditions have seldom been reported. Here, an over 400 W h kg K battery is realized at -40 °C via an anode-free and dual-ion strategy, surpassing these state-of-the-art K batteries and even most Li/Na batteries at low temperatures (LTs).
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
The assembly of peptides is generally mediated by liquid-liquid phase separation, which enables control over assembly kinetics, final structure, and functions of peptide-based supramolecular materials. Modulating phase separation can alter the assembly kinetics of peptides by changing solvents or introducing external fields. Herein, we demonstrate that the assembly of peptides can be effectively catalyzed by complex coacervates.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Laoshan Laboratory, Qingdao 266237, China.
Nucleation of multicomponent systems is a pervasive phenomenon in nature and is pertinent to a diverse array of scientific and industrial challenges. The nucleation mechanisms of immiscible multicomponent systems remain unclear. Here, gas hydrate is employed as a model system to study the nucleation of multicomponent systems.
View Article and Find Full Text PDFJ Chem Phys
December 2024
Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India.
The Marcus semi-classical and quantum theories of electron transfer (ET) have been extensively used to understand and predict tunneling ET reaction rates in the condensed phase. Previously, the traditional Marcus two-state model has been extended to a three-state model, which assumes a harmonic dependence of donor (D), bridge (B), and acceptor (A) free energies on the reaction (e.g.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
Potassium metal batteries are emerging as a promising high-energy density storage solution, valued for their cost-effectiveness and low electrochemical potential. However, understanding the role of potassiphilic sites in nucleation and growth remains challenging. This study introduces a single-atom iron, coordinated by nitrogen atoms in a 3D hierarchical porous carbon fiber (Fe─N-PCF), which enhances ion and electron transport, improves nucleation and diffusion kinetics, and reduces energy barriers for potassium deposition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!