DMD-related muscular dystrophy in Cameroon: Clinical and genetic profiles.

Mol Genet Genomic Med

Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa.

Published: August 2020

AI Article Synopsis

  • The study highlights the lack of research on Duchenne Muscular Dystrophy (DMD) in African populations, specifically focusing on patients in Cameroon to understand their clinical features and genetic mutations.
  • A total of 17 male patients were examined, revealing common symptoms like proximal muscle weakness and calf hypertrophy, with a typical onset of symptoms around age 4.6 and diagnosis around age 12.
  • Genetic testing showed that 45.5% of patients had deletions in the DMD gene, primarily between exons 45 and 50, with a recommendation for improved screening methods to detect these mutations more effectively in the future.

Article Abstract

Background: Most of the previous studies on Duchenne Muscular Dystrophy (DMD) were conducted in Caucasian, Asian, and Arab populations. Therefore, little is known about the features of this disease in Africans. In this study, we aimed to determine the clinical characteristics of DMD, and the common mutations associated with this condition in a group of Cameroonian patients.

Methods: We recruited DMD patients and performed a general physical examination on each of them. Multiplex ligand-dependant probe amplification was carried out to investigate exon deletions and duplications in the DMD gene (OMIM: 300377) of patients and their mothers.

Results: A total of 17 male patients from 14 families were recruited, aged 14 ± 5.1 (8-23) years. The mean age at onset of symptoms was 4.6 ± 1.5 years, and the mean age at diagnosis was 12.1 ± 5.2 years. Proximal muscle weakness was noted in all patients and calf hypertrophy in the large majority of them (88.2%; 15/17). Flexion contractures were particularly frequent on the ankle (85.7%; 12/14). Wasting of shoulder girdle and thigh muscles was present in 50% (6/12) and 46.2% (6/13) of patients, respectively. No patient presented with hearing impairment. Deletions in DMD gene (OMIM: 300377) occurred in 45.5% of patients (5/11), while duplications were observed in 27.3% (3/11). Both mutation types were clustered between exons 45 and 50, and the proportion of de novo mutation was estimated at 18.2% (2/11).

Conclusion: Despite the first symptoms of DMD occurring in infancy, the diagnosis is frequently made later in adolescence, indicating an underestimation of the number of cases of DMD in Cameroon. Future screening of deletions and duplications in patients from Cameroon should focus on the distal part of the gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434738PMC
http://dx.doi.org/10.1002/mgg3.1362DOI Listing

Publication Analysis

Top Keywords

muscular dystrophy
8
deletions duplications
8
dmd gene
8
gene omim
8
omim 300377
8
dmd
7
patients
7
dmd-related muscular
4
dystrophy cameroon
4
cameroon clinical
4

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

National Institute of Neurological Disorders and Stroke, Rockville, MD, USA.

Background: Access to biospecimens is an oft cited challenge to the progress in research on neurological disorders. Access to clinical biospecimens for development of validated biomarkers and improved cellular models of Alzheimer's Disease and Alzheimer's Disease Related Dementias (AD/ADRD) are cited as priorities across several NIH AD/ADRD Research Implementation Milestones (https://www.nia.

View Article and Find Full Text PDF

Ribitol and ribose treatments differentially affect metabolism of muscle tissue in FKRP mutant mice.

Sci Rep

January 2025

McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.

Dystroglycanopathy is characterized by reduced or lack of matriglycan, a cellular receptor for laminin as well as other extracellular matrix proteins. Recent studies have delineated the glycan chain structure of the matriglycan and the pathway with key components identified. FKRP functions as ribitol-5-phosphate transferase with CDP-ribitol as the substrate for the extension of the glycan chain.

View Article and Find Full Text PDF

An abnormal expansion of a GGGGCC (GC) hexanucleotide repeat in the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two debilitating neurodegenerative disorders driven in part by gain-of-function mechanisms involving transcribed forms of the repeat expansion. By utilizing a Cas13 variant with reduced collateral effects, we develop here a high-fidelity RNA-targeting CRISPR-based system for C9ORF72-linked ALS/FTD. When delivered to the brain of a transgenic rodent model, this Cas13-based platform curbed the expression of the GC repeat-containing RNA without affecting normal C9ORF72 levels, which in turn decreased the formation of RNA foci, reduced the production of a dipeptide repeat protein, and reversed transcriptional deficits.

View Article and Find Full Text PDF

Background And Purpose: This study was an open-label, dose-escalation, phase 1 clinical trial to determine the safety and dose of EN001 for patients with Duchenne muscular dystrophy (DMD). EN001, developed by ENCell, are allogeneic early-passage Wharton's jelly-derived mesenchymal stem cells that originate at the umbilical cord, with preclinical studies demonstrating their high therapeutic efficacy for DMD.

Methods: This phase 1 clinical trial explored the safety and tolerability of EN001 as a potential treatment option for patients with DMD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!