Background: Brachycephalic airway syndrome can pose a risk of complicated recovery from anesthesia as a result of irritation to the excess pharyngeal andlaryngeal tissue present in affected dogs. High-flow nasal cannula (HFNC) oxygen therapy is a respiratory support modality that offers provision of continuous positive airway pressure via high gas flow rates. The HFNC system actively warms and humidifies inspired gases, which improves comfort and facilitates tolerance of the high flow rates in people and dogs. HFNC oxygen therapy was applied to brachycephalic dogs that developed increased work of breathing or hypoxemia in the recovery phase of anesthesia to determine if this device would be tolerable and effective for relief of upper respiratory difficulty.

Key Findings: The HFNC nasal prong interface is well suited to the brachycephalic facial structure. The application of HFNC was found to reduce dyspnea scores in patients with signs of upper airway obstruction after general anesthesia. Aerophagia and changes in PCO were noted.

Significance: Application of HFNC in the recovery period may result in improved airflow during times of somnolent obstructive breathing, not unlike the use of continuous positive airway pressure therapy in sleep-disordered breathing in people.

Download full-text PDF

Source
http://dx.doi.org/10.1111/vec.12971DOI Listing

Publication Analysis

Top Keywords

oxygen therapy
12
high-flow nasal
8
nasal cannula
8
general anesthesia
8
upper airway
8
hfnc oxygen
8
continuous positive
8
positive airway
8
airway pressure
8
flow rates
8

Similar Publications

Persistent COVID-19 symptoms and associated factors in a tertiary hospital in Thailand.

J Infect Dev Ctries

December 2024

Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand.

Introduction: Coronavirus disease 2019 (COVID-19) is associated with long-term symptoms, but the spectrum of these symptoms remains unclear. We aimed to identify the prevalence and factors associated with persistent symptoms in patients at the post-COVID-19 outpatient clinic.

Methodology: This cross-sectional, observational study included hospitalized severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infected patients followed-up at a post-COVID-19 clinic between September 2021 and January 2022.

View Article and Find Full Text PDF

Massive endobronchial hemorrhage leading to Cardiac arrest during EBUS-TBNA: a case of successful resuscitation.

BMC Pulm Med

January 2025

Department of Pulmonary and Critical Care Medicine, School of Medicine, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, China.

Introduction: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is commonly used for diagnosing mediastinal lymphadenopathy. Despite a low complication rate, severe hemorrhage can occur which is reported in this literature, particularly in hypervascular conditions like Castleman disease.

Methods: A 54-year-old male with idiopathic multicentric Castleman disease underwent EBUS-TBNA for mediastinal lymph node sampling.

View Article and Find Full Text PDF

Hyperbaric oxygen therapy and corticosteroids as combined treatment for acute acoustic trauma.

Eur Arch Otorhinolaryngol

January 2025

Motion Sickness and Human Performance Laboratory, The Israel Naval Medical Institute, IDF Medical Corps, Haifa, Israel.

Purpose: Acute acoustic trauma (AAT) is a sudden sensorineural hearing loss (SNHL) due to exposure to high intensity impulse noise. There are no acceptable treatment guidelines, although several studies showed steroids could be effective in restoring hearing levels. A recent report suggested that steroids combined with hyperbaric oxygen therapy (HBOT) are a superior regiment for AAT.

View Article and Find Full Text PDF

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Acid triggering highly-efficient release of reactive oxygen species to block mitochondrial-mediated homeostasis maintenance for accelerating cell death.

Anal Chim Acta

February 2025

School of Chemistry and Chemical Engineering, Anhui University, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University) Ministry of Education, Hefei, 230601, PR China; School of Chemical and Environmental Engineering, Anhui Polytechnic University, 241000, Wuhu, PR China. Electronic address:

A pivotal pathway of photodynamic therapy (PDT) is to prompt mitochondrial damage by reactive oxygen species (ROS) generation, thus leading to cancer cell apoptosis. However, mitochondrial autophagy is induced during such a PDT process, which is a protective mechanism for cancer cell homeostasis, resulting in undermined therapeutic efficacy. Herein, we report a series of meticulously designed donor (D)-π-acceptor (A) photosensitizers (PSs), characterized by the strategic modulation of thiophene π-bridges, which exhibit unparalleled mitochondrial targeting proficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!